首页> 外文学位 >Critical Dynamics in Complex Excitable Networks.
【24h】

Critical Dynamics in Complex Excitable Networks.

机译:复杂可激励网络中的关键动力学。

获取原文
获取原文并翻译 | 示例

摘要

We study the effect of network structure on the dynamical response of networks of coupled discrete-state excitable elements to two distinct types of stimulus. First, we consider networks which are stochastically stimulated by an external source. Such systems have been used as toy models for the dynamics of some human sensory neuronal networks and neuron cultures. The collective dynamics of such systems depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. Specifically, a largest eigenvalue equal to one corresponds to a critical regime with maximum dynamic range. This result appears to hold for random, all-to-all, and scale free topologies, and is robust to the inclusion of time delays and refractory states. We gain deeper insight into the effects of network topology using a nonlinear analysis in terms of additional spectral properties of the adjacency matrix. We find that homogeneous networks can reach a higher dynamic range than those with heterogeneous topology. Second, we consider networks stimulated only once at a single node, with dynamics allowed to evolve without additional stimulus. Each realization of such a process will create a cascade of activity of varying duration and size. We analyze the distributions of cascade size and duration in complex networks resulting from a single nodal excitation, finding that when the largest eigenvalue is equal to one, so-called "critical avalanches" are power-law distributed in size, with exponent -3/2, and power-law distributed in duration, with exponent -2. We employ techniques from dynamical systems to recover the differences among avalanches started at different network nodes, also deriving distributions for avalanches in subcritical and supercritical regimes.
机译:我们研究了网络结构对耦合的离散状态可激发元素对两种不同类型的刺激的网络动力响应的影响。首先,我们考虑由外部来源随机刺激的网络。这样的系统已经被用作一些人类感觉神经网络和神经元文化的动力学的玩具模型。这种系统的集体动力取决于网络中连接的拓扑。在这里,我们开发了一种一般的理论方法来研究网络拓扑对动态范围的影响,该方法量化了刺激强度范围,从而导致可区分的网络响应。我们发现加权网络邻接矩阵的最大特征值决定着网络的动态范围。具体而言,等于1的最大特征值对应于具有最大动态范围的临界状态。该结果似乎适用于随机的,全部到所有和无标度的拓扑,并且对于包含时间延迟和不应期状态具有鲁棒性。通过使用邻接矩阵的其他频谱特性的非线性分析,我们可以更深入地了解网络拓扑的影响。我们发现同质网络比具有异构拓扑的网络可以达到更高的动态范围。其次,我们认为网络在单个节点上仅被刺激一次,其动态变化无需额外刺激即可发展。这种过程的每次实现都会创建一系列持续时间和规模各异的活动。我们分析了单个节点激发导致的复杂网络中级联大小和持续时间的分布,发现当最大特征值等于1时,所谓的“临界雪崩”的幂律分布为大小,指数为-3 / 2,幂律分布在持续时间内,指数为-2。我们采用动态系统中的技术来恢复在不同网络节点上开始的雪崩之间的差异,还可以得出亚临界和超临界状态下雪崩的分布。

著录项

  • 作者

    Larremore, Daniel B.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号