首页> 外文学位 >Photonic crystal fibers: Characterization and supercontinuum generation.
【24h】

Photonic crystal fibers: Characterization and supercontinuum generation.

机译:光子晶体光纤:表征和超连续谱。

获取原文
获取原文并翻译 | 示例

摘要

Photonic crystals are periodic; dielectric structures that exhibit photonic bandgaps (PBGs), spectral regions within which light is forbidden to propagate inside the medium. As an exciting area in photonic crystals and fiber optics, photonic crystal fibers (PCFs, both index-guiding and PBG-guiding) have brought us many new opportunities by enabling new photonic devices for a range of applications. In this thesis, I investigated index-guiding PCFs in two respects: modeling their optical properties and studying supercontinuum (SC) generation in them.; As the first part of my research, I developed and/or applied several efficient methods in modeling and characterization of index-guiding PCFs, some of which can be easily applied in studying PBG-guiding PCFs. Based on a plane-wave expansion approach, I proposed a method by which one can obtain the effective cladding indices by solving the full-vector wave equation for a periodic cladding structure. This work improves the effective index model for the characterization of PCFs, which can provide insights into some of the interesting properties of PCFs, including "endlessly single mode operation" and novel dispersion properties. In order to rigorously model PCFs, however. one needs to solve the full-vector wave equation because the complex structures and high-index contrast make the scalar wave equation insufficient. To this end, I investigated two methods: multipole scattering method and full-vector finite-difference frequency-domain (FDFD) method. Both methods were demonstrated to be efficient and can accurately characterize linear optical properties of PCFs, including propagation constants, modal fields, dispersion, birefringence and modal area. I also studied birefringent properties of PCFs under squeezing or twisting by using a finite element, method. This study shows that, stress-induced linear birefringence in a PCF is reduced when compared to a standard fiber, and that twist-induced circular birefringence is enhanced in a PCF having small air-filling fraction in the cladding.; In the second part of the thesis research. I studied SC generation in PCFs. The high effective nonlinearity of a PCF due to the small core size can be combined with a shifted zero-dispersion wavelength (shifted to a wavelength region where high-power laser sources---Ti:sapphire femtosecond lasers---are available). This combination facilitates the generation of broadband SC spanning more than 2 octaves. Using a generalized scalar nonlinear Schrodinger equation, I first numerically studied the effect of input pulse frequency chirping on SC generation in PCFS. The simulations show that the SC bandwidth increases with linear chirping, and that the coherence of SC improves as linear chirping increases. Most interestingly, an optimal positive linear chirp is identified that maximizes the SC bandwidth, corresponding to the formation of only one red-shifting Raman soliton. Next I numerically investigated the polarization properties of SC spectra, generated in birefringent PCFs, by solving the generalized coupled nonlinear Schrodinger equations. The simulations illustrate the complicated polarization behavior across the SC spectrum and quantify the pulse-to-pulse polarization fluctuations in the presence of input noise. Finally I carried out an experimental study of the polarization properties in a birefringent PCF, achieving qualitative agreements with numerical simulations.
机译:光子晶体是周期性的。表现出光子带隙(PBG)的介电结构,其中光被禁止在其中传播的光谱区域。作为光子晶体和光纤中令人兴奋的领域,光子晶体光纤(PCF,既是折射率导引又是PBG导引)通过为各种应用启用新型光子器件为我们带来了许多新机遇。在本文中,我从两个方面研究了折射率引导PCF:对它们的光学特性进行建模,并研究其中的超连续谱(SC)生成。作为研究的第一部分,我开发和/或应用了几种有效的方法来对索引指导PCF进行建模和表征,其中一些方法可以轻松地用于研究PBG指导PCF。基于平面波扩展方法,我提出了一种方法,可以通过求解周期包层结构的全矢量波方程来获得有效包层指数。这项工作改进了用于PCF表征的有效指标模型,该模型可以提供对PCF某些有趣特性的见解,包括“无限单模运行”和新颖的色散特性。为了严格建模PCF,但是。人们需要解决全矢量波动方程,因为复杂的结构和高指数的对比度使得标量波动方程不足。为此,我研究了两种方法:多极散射方法和全矢量有限差分频域(FDFD)方法。两种方法都被证明是有效的,并且可以准确地表征PCF的线性光学特性,包括传播常数,模态场,色散,双折射和模态面积。我还使用有限元方法研究了PCF在挤压或扭曲下的双折射特性。这项研究表明,与标准光纤相比,PCF中应力引起的线性双折射降低了,包层中空气填充率较小的PCF中扭曲引起的圆双折射得到了增强。在论文的第二部分进行研究。我研究了PCF中的SC生成。由于纤芯尺寸小,PCF的高效非线性可以与偏移的零色散波长(偏移到可以使用大功率激光源-Ti:蓝宝石飞秒激光器的波长区域)结合使用。这种组合有助于生成跨越2个八度的宽带SC。我首先使用广义标量非线性Schrodinger方程,数值研究了PCFS中输入脉冲频率线性调频对SC生成的影响。仿真表明,线性调频后,SC带宽增加,线性调频后,SC的相干性提高。最有趣的是,确定了一个最佳的正线性线性调频信号,该线性调频信号使SC带宽最大化,对应于仅形成一个红移拉曼孤子。接下来,我通过求解广义耦合非线性Schrodinger方程,数值研究了双折射PCF中产生的SC光谱的偏振特性。仿真说明了整个SC频谱的复杂极化行为,并在存在输入噪声的情况下量化了脉冲间的脉冲波动。最后,我对双折射PCF中的偏振特性进行了实验研究,并通过数值模拟获得了定性一致性。

著录项

  • 作者

    Zhu, Zhaoming.;

  • 作者单位

    The University of Rochester.;

  • 授予单位 The University of Rochester.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号