首页> 外文学位 >Development of a land surface hydrologic modeling and data assimilation system for the study of subsurface-land surface interaction.
【24h】

Development of a land surface hydrologic modeling and data assimilation system for the study of subsurface-land surface interaction.

机译:开发用于研究地下-地表相互作用的地表水文建模和数据同化系统。

获取原文
获取原文并翻译 | 示例

摘要

Coupled models of the land surface and the subsurface, which incorporate hydrologic components into LSMs and couple the deeper subsurface with the atmosphere, may yield significant improvements in both short-term climate forecasting and flood/drought forecasting. A fully-coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land-surface scheme is mainly adapted from the Noah LSM, which is widely used in mesoscale atmospheric models and has undergone extensive testing. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent both the link between groundwater and the surface energy balance as well as some of the land surface heterogeneities caused by topography.;Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km 2) in central Pennsylvania. Observations of discharge, water table depth, soil moisture, soil temperature, and sensible and latent heat fluxes in June and July 2009 are used to manually calibrate Flux-PIHM. Model predictions from 1 March to 1 December 2009 are evaluated. Model predictions of discharge, soil moisture, water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. The discharge prediction is comparable to state-of-the-art conceptual models implemented at similar watersheds. Comparisons of model predictions between Flux-PIHM and the original hydrologic model PIHM show that the inclusion of the complex surface energy balance simulation only brings slight improvement in hourly model discharge predictions. Flux-PIHM does improve the evapotranspiration prediction at hourly scale, the prediction of total annual discharge, and also improves the predictions of some peak discharge events, especially after extended dry periods. Model results reveal that annual average sensible and latent heat fluxes are strongly correlated with water table depth, and the correlation is especially strong for the model grids near the river.;To simplify the procedure of model calibration, a Flux-PHIM data assimilation system is developed by incorporating the ensemble Kalman filter (EnKF) into Flux- PIHM. This is the first parameter estimation using EnKF for a physically-based hydrologic model. Both synthetic and real data experiments are performed at the Shale Hills watershed to test the capability of EnKF in parameter estimation. Six model parameters selected from a model parameter sensitivity test are estimated. In the synthetic experiments, synthetic observations of discharge, water table depth, soil moisture, land surface temperature, sensible and latent heat fluxes, and transpiration are assimilated into the system. Results show that EnKF is capable of accurately estimating model parameter values for Flux-PIHM. The estimated parameter values are very close to the true parameter values. Synthetic experiments are also performed to test the efficiency of assimilating different observations. It is found that discharge, soil moisture, and land surface temperature (or sensible and latent heat fluxes) are the most critical observations for Flux-PIHM calibration. In real data experiments, in situ observations of discharge, water table depth, soil moisture, and sensible and latent heat fluxes are assimilated. Results show that, for five out of the six parameters, the EnKF-estimated parameter values are very close to the manually-calibrated parameter values. The predictions using EnKF-estimated parameters and manually-calibrated parameters are also similar. Thus the results demonstrate that, given a limited number of site-specific observations, an automatic sequential calibration method (EnKF) can be used to optimize Flux-PIHM for watersheds like Shale Hills.
机译:土地表面和地下的耦合模型将水文成分纳入LSM,并将深层地下与大气耦合,这可能在短期气候预测和洪水/干旱预测方面都产生重大改进。通过将陆面方案纳入宾夕法尼亚州综合水文模型(PIHM)中,开发了完全耦合的陆面水文模型Flux-PIHM。陆面方案主要是从Noah LSM改编而来的,Noah LSM已广泛用于中尺度大气模型中,并已进行了广泛的测试。因为PIHM能够模拟侧向水流和深层地下水,所以Flux-PIHM既可以表示地下水与地表能量平衡之间的联系,又可以表示由地形引起的某些陆地表面非均质性。在宾夕法尼亚州中部的页岩山流域(0.08 km 2)。 2009年6月和2009年7月对流量,地下水位深度,土壤湿度,土壤温度以及感热通量和潜热通量的观测值用于手动校准Flux-PIHM。评估了2009年3月1日至12月1日的模型预测。排放,土壤湿度,地下水位深度,显热通量和潜热通量以及土壤温度的模型预测与观测值吻合良好。流量预测可与在类似流域实施的最新概念模型相媲美。 Flux-PIHM与原始水文模型PIHM之间的模型预测比较表明,复杂的表面能平衡模拟的引入仅对小时模型流量预测带来了些许改进。 Flux-PIHM确实改进了每小时尺度上的蒸散量预测,年度总排放量的预测,并且还改善了某些峰值排放事件的预测,尤其是在延长的干旱期之后。模型结果表明,年平均感热通量和潜热通量与地下水位高度密切相关,对于河流附近的模型网格,这种相关性尤为强烈。为了简化模型校准过程,Flux-PHIM数据同化系统是通过将集成卡尔曼滤波器(EnKF)集成到Flux- PIHM中而开发的。这是使用EnKF进行基于物理的水文模型的首次参数估计。在Shale Hills流域进行了综合和实际数据实验,以测试EnKF在参数估计中的能力。估计了从模型参数敏感性测试中选择的六个模型参数。在合成实验中,将排放,地下水位深度,土壤湿度,土地表面温度,显热和潜热通量以及蒸腾作用的综合观测结果吸收到系统中。结果表明,EnKF能够准确估计Flux-PIHM的模型参数值。估计的参数值非常接近真实参数值。还进行了合成实验,以测试吸收不同观测值的效率。发现流量,土壤湿度和地表温度(或感热通量和潜热通量)是Flux-PIHM校准的最关键观察值。在实际数据实验中,对流量,地下水位深度,土壤湿度以及显热和潜热通量的原位观测进行了同化。结果表明,对于六个参数中的五个,EnKF估计的参数值与手动校准的参数值非常接近。使用EnKF估计的参数和手动校准的参数的预测也相似。因此,结果表明,在有限的站点特定观测值的前提下,可以使用自动顺序校准方法(EnKF)来优化Shale Hills等流域的Flux-PIHM。

著录项

  • 作者

    Shi, Yuning.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Hydrology.;Meteorology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号