首页> 外文学位 >Differential interferometric measurement of mirror shape parameters.
【24h】

Differential interferometric measurement of mirror shape parameters.

机译:镜面形状参数的差分干涉测量。

获取原文
获取原文并翻译 | 示例

摘要

This project was inspired by the need for a remote method to accurately measure radius of curvature of mirrors tested under the NASA Advanced Mirror System Demonstrator program. Under this program, off axis parabolas (subscale candidates for James Webb Space Telescope optical elements) were tested under cryo-vac conditions. A remote, differential interferometric method is presented for measuring the shape parameters of general aspheric mirrors. The result of measurement is the assignment of best-fit values to a set of parameters that characterize the shape of the surface. If the mirror is nominally a conic of rotation, for example, the measurement yields the radius of curvature and conic constant. The method involves testing the optic in an interferometric center-of-curvature null configuration but can easily be extended to include conjugate null tests. During the measurement, known translational misalignments are introduced and the effects on the optical path length function are measured using a phase-shifting interferometer. Based on the nominal mirror shape, a model function is defined, up to a set of free shape parameters. The mirror shape parameters are regressed, based on the interferometric data, from this model. This differential measurement method works for on- and off-axis mirrors of all shapes and can be applied remotely as long as the mirror is mounted on an actuated stage. Hence, this measurement method would work well in a cryogenic testing situation. We have successfully applied the method to the case of an off-axis parabola with a nominal radius of curvature of 304.8 mm, a diameter of 76.17 mm, and a pupil offset of -89.40 mm.
机译:该项目的灵感来自需要一种远程方法来准确测量在NASA Advanced Mirror System Demonstrator程序下测试的镜子的曲率半径。在此程序下,在低温真空条件下测试了离轴抛物线(James Webb空间望远镜光学元件的子尺度候选者)。提出了一种远程微分干涉法,用于测量一般非球面镜的形状参数。测量的结果是将最佳拟合值分配给表征表面形状的一组参数。例如,如果反射镜名义上是旋转圆锥,则测量会得出曲率半径和圆锥常数。该方法涉及以干涉式曲率中心无效配置测试光学器件,但可以轻松扩展为包括共轭无效测试。在测量过程中,引入了已知的平移未对准,并使用相移干涉仪测量了对光程长度函数的影响。根据标称镜面形状,定义模型函数,最多可定义一组自由形状参数。基于干涉数据,从该模型对镜面形状参数进行回归。这种差分测量方法适用于所有形状的轴上和轴外反射镜,只要将反射镜安装在致动平台上就可以远程应用。因此,这种测量方法在低温测试情况下会很好地工作。我们已成功地将该方法应用于标称曲率半径为304.8毫米,直径为76.17毫米,瞳孔偏移为-89.40毫米的离轴抛物线的情况。

著录项

  • 作者

    Robinson, Brian.;

  • 作者单位

    The University of Alabama in Huntsville.;

  • 授予单位 The University of Alabama in Huntsville.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 p.2986
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号