首页> 外文学位 >Ultrafast dynamics and optical control of coherent phonons in tellurium.
【24h】

Ultrafast dynamics and optical control of coherent phonons in tellurium.

机译:碲中相干声子的超快动力学和光学控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation reports the ultrafast dynamics of tellurium after excitation by one or more intense femtosecond laser pulses. Irradiation of tellurium by femtosecond pulses is known to excite coherent phonons, but the nature of the excitation process and the details of the material dynamics under intense excitation are, as of yet, not precisely determined. We investigate these dynamics by monitoring the response of tellurium using an optical pump-probe technique designed to measure the dielectric tensor across the visible spectrum with femtosecond time resolution.; The observed dynamics are similar to the ultrafast dynamics of molecules, where photoexcitation of electrons establishes a new potential surface on which the nuclei move. The time-resolved dielectric tensor measurements provide a “snapshot” of the material in a particular lattice configuration. From the observed changes in the optical properties, we infer the underlying changes in the lattice and thereby develop a picture of the nuclear motion.; We find that the main resonance for interband electronic transitions in tellurium shifts to lower photon energy due to the lattice displacement that results from photoexcitation. Under single pulse excitation, a rapid change in the equilibrium lattice configuration leads to a long-lived shift in the resonance energy along with fast oscillations around this value. Under double pulse excitation, the lattice dynamics can be controlled; we achieve both enhancement and cancellation of coherent phonons for excitation strengths up to the damage threshold.
机译:本文报道了一个或多个强飞秒激光脉冲激发后碲的超快动力学。飞秒脉冲辐照碲会激发相干声子,但到目前为止,还没有精确确定激发过程的性质以及强激发下材料动力学的细节。我们通过使用光学泵浦探针技术监测碲的响应来研究这些动力学,该技术设计为以飞秒时间分辨率在可见光谱范围内测量介电张量。观察到的动力学类似于分子的超快动力学,其中电子的光激发建立了一个新的潜在表面,原子核在该表面上移动。时间分辨介电张量测量提供了特定晶格配置下的材料“快照”。从观察到的光学性质变化,我们推断出晶格中的潜在变化,从而形成了核运动的图。我们发现,由于光激发引起的晶格位移,碲中的带间电子跃迁的主要共振移向了较低的光子能量。在单脉冲激励下,平衡晶格构型的快速变化会导致共振能量的长期转移以及围绕该值的快速振荡。在双脉冲激励下,可以控制晶格动力学。我们实现了相干声子的增强和抵消,激发强度达到了损伤阈值。

著录项

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 p.265
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号