首页> 外文学位 >Integrated optimal design of wind turbine systems.
【24h】

Integrated optimal design of wind turbine systems.

机译:风力涡轮机系统的集成优化设计。

获取原文
获取原文并翻译 | 示例

摘要

Energy is the basis for economic development and it is important to have a reliable supply of energy for the sustainable development of any country. With the rapid growth of the global economy, the energy crisis is aggravating substantially. It is, therefore, of great interest to develop reliable renewable energy resources that can take up a relatively large proportion of the growing energy needs with the crucial features of energy security, environment protection and economic development. Since the beginning of the twenty first century, countries all over the world and international organizations have invested tremendous amount of funds for the development of new energy systems. As a competitor to the conventional energy sources, wind energy is considered to be an important source for a diversified energy portfolio, particularly, because it is a clean energy source with an inexhaustible supply. Wind energy has become one of the fastest growing renewable energy systems with promising prospects for large scale commercialization.;This work presents an integrated optimum design of horizontal axis wind turbine and doubly fed induction generator system with multiple objectives and multiple design constraints. The design of horizontal axis wind turbine rotors for maximum power generation is considered, using the blade element momentum aerodynamic modeling, in this exploratory study. The rotor is assumed to operate over a specific range of wind velocity and the restrictions imposed upon the behavior of the structure involve limitations on aerodynamic axial induction factor and blade stresses that allow the turbine blade rotation while satisfying the strength requirements. The blade element momentum theory and Prandtl's tip root loss approximation are used to develop the aerodynamic computational model and beam finite elements are used to idealize the rotor blade. The sequential quadratic programming method has been used to solve the multivariable nonlinear constrained optimization problem. Based on the structural design of the turbine, the power versus speed characteristic of the horizontal axis wind turbine is determined, which is subsequently used to develop a speed control strategy for the induction generator so as to make the wind turbine reach its maximum efficiency of power generation. The vector control of the doubly fed induction generator system for decoupling active and reactive power is presented, and the proportional and integral control of the rotor-side and the grid-side converters is outlined. A sudden step change in wind velocity is assumed for the simulation of the doubly fed induction generator system in order to predict the power output of the wind turbine system. The control of doubly fed generator system is carried out to improve the quality of power flow to the grid.;Because many of the parameters associated with the wind turbine system such as wind velocity, variation of wind velocity with altitude, and fabrication/installation quantities like rotor height, blade dimensions and airfoil shape, are uncertain or random, a nonlinear constrained stochastic optimization problem of the wind turbine systems design is also formulated. The design variables corresponding to the optimum blade design are found to capture the maximum annual power at any specific location of the wind turbine system. The mean value plus a constant number of standard deviations of the annual power generated by the turbine is considered as the objective for maximization.;In order to be able to handle the uncertainty problem without a precise knowledge of the random parameters, in terms of probability distributions and/or characteristics such as mean values and standard deviations, a fuzzy approach is also presented for the optimum design of wind turbine systems. Since most practical engineering design problems involve several conflicting objectives to be considered, a multi-objective optimization method is introduced in this work with the consideration of maximization of the power generated by the wind turbine along with the minimization of overshoot and settling tine of the transient response of the induction generator. To handle conflicting multiple objectives, appropriate membership functions of the objective functions, constraints and design variables are defined, and a method of solving a fuzzy multi-objective wind turbine system optimization problem using nonlinear programming techniques is presented.
机译:能源是经济发展的基础,为任何国家的可持续发展提供可靠的能源供应很重要。随着全球经济的快速增长,能源危机正在严重加剧。因此,开发可靠的可再生能源非常重要,因为可再生能源可以在能源需求增长,能源安全,环境保护和经济发展的关键特征中占据相对较大的比例。自二十世纪初以来,世界各国和国际组织为开发新能源系统投入了大量资金。作为传统能源的竞争者,风能被认为是多样化能源组合的重要来源,特别是因为它是一种无穷无尽的清洁能源。风能已成为增长最快的可再生能源系统之一,具有大规模商业化的前景。这项工作提出了具有多个目标和多个设计约束的水平轴风力发电机和双馈感应发电机系统的集成优化设计。在这项探索性研究中,考虑了使用叶片元件动量空气动力学模型来设计用于最大发电的水平轴风力涡轮机转子。假定转子在特定的风速范围内运行,并且对结构行为的限制涉及对空气动力轴向感应系数和叶片应力的限制,这些因素允许涡轮叶片旋转同时满足强度要求。叶片单元动量理论和Prandtl的叶根损失近似值用于建立空气动力学计算模型,而梁有限元则用于使转子叶片理想化。顺序二次规划方法已被用来解决多变量非线性约束优化问题。根据涡轮机的结构设计,确定水平轴风力涡轮机的功率与速度特性,随后将其用于开发感应发电机的速度控制策略,以使风力涡轮机达到其最大功率效率。代。提出了用于解耦有功和无功的双馈感应发电机系统的矢量控制,并概述了转子侧和电网侧变流器的比例和积分控制。为了预测双馈感应发电机系统,假设风速突然变化,以便预测风力涡轮机系统的功率输出。进行双馈发电机系统的控制是为了改善流向电网的电能质量。因为与风力涡轮机系统相关的许多参数,例如风速,风速随高度的变化以及制造/安装量像转子高度,叶片尺寸和翼型形状一样不确定或随机,还提出了风机系统设计的非线性约束随机优化问题。发现与最佳叶片设计相对应的设计变量可捕获风力涡轮机系统任何特定位置的最大年发电量。涡轮机产生的年功率的平均值加上恒定数量的标准偏差被认为是最大化的目标。为了能够在不确定概率的情况下处理不确定性问题而无需精确地了解随机参数分布和/或特性(例如平均值和标准偏差),还提出了一种模糊方法来优化风力涡轮机系统。由于大多数实际的工程设计问题都涉及要考虑的几个相互矛盾的目标,因此在这项工作中引入了一种多目标优化方法,其中考虑了风力涡轮机产生的功率的最大化以及瞬态的过冲和稳定时间的最小化。感应发电机的响应。为了处理多个目标的冲突,定义了目标函数的适当隶属函数,约束和设计变量,并提出了一种使用非线性规划技术解决模糊多目标风力涡轮机系统优化问题的方法。

著录项

  • 作者

    Tian, Jun.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Alternative Energy.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号