首页> 外文学位 >The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement.
【24h】

The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement.

机译:使用惯性静电限制将先进燃料融合以生产医学同位素。

获取原文
获取原文并翻译 | 示例

摘要

Experiments are described that used an Inertial Electrostatic Confinement (IEC) fusion device to create radioisotopes for medical diagnostics. The IEC concept utilizes spherically concentric electrodes to accelerate fusion ions to high energies, allowing the use of the D-D and advanced D-3He fusion reactions. The D-3He reaction produces a high-energy 14.7 MeV proton, and this proton is energetic enough to be used to create radioisotopes.; This dissertation focuses first on where specifically the fusion reactions are occurring in the IEC device. It was found that at 2 mtorr operating pressures, 70% of the D-D reactions occur throughout the entire volume of the vacuum chamber. About 22% of the reactions occur in a small core in the center of the device, and the other 8% are due to embedded D-D reactions in the cathode of the device. On the other hand, for D-3He, 95% of the reactions are due to embedded reactions, and the other 5% come from a small core in the center of the device.; Beam-target D-3He fusion was used to create medical isotopes in two different systems. The designs focused on creating short-lived species capable of use in Positron Emission Tomography. The first isotope created was 94mTc, a positron emitter with a 52-minute half-life. Approximately 1.5 nCi of 94mTc were created using the 94Mo(p,n) 94mTc reaction. The second isotope created was 13N, a positron emitter with a ten-minute half-life. Approximately 1.0 nCi of 13N was created using the 16O(p,alpha)13N reaction.; The final part of the research investigated the effects of deuterium and helium implantation in the tungsten-rhenium cathode of the IEC device. The effect of the implantation on the surface morphology of pure tungsten was also determined using scanning electron microscopy. Deuterium did not appear to affect the surface of tungsten after high temperature (>800 C) implantation. Helium created a porous surface structure at the same temperatures starting at about 4 x 1016 ions/cm2. The pores increased in size and decreased in density with increasing temperature and fluence.
机译:描述了使用惯性静电限制(IEC)融合设备创建用于医学诊断的放射性同位素的实验。 IEC概念利用球形同心电极将聚变离子加速到高能,从而允许使用D-D和先进的D-3He聚变反应。 D-3He反应产生高能的14.7 MeV质子,并且该质子的能量足够用于产生放射性同位素。本文首先关注IEC设备中发生聚变反应的具体位置。已发现在2毫托的工作压力下,整个真空室的整个容积中发生70%的D-D反应。大约22%的反应发生在设备中央的小核中,其余8%是由于设备阴极中嵌入的D-D反应引起的。另一方面,对于D-3He,95%的反应是由嵌入反应引起的,其余5%则来自设备中心的小核。束靶D-3He融合用于在两个不同的系统中创建医学同位素。设计的重点是创造能够在正电子发射断层扫描中使用的短寿命物种。产生的第一个同位素是94mTc,这是一个具有52分钟半衰期的正电子发射体。使用94Mo(p,n)94mTc反应生成了约1.5 nCi的94mTc。产生的第二个同位素是13N,一个具有十分钟半衰期的正电子发射体。使用16O(p,α)13N反应生成约1.0 nCi的13N。研究的最后一部分研究了氘和氦在IEC器件的钨-阴极中注入的影响。还使用扫描电子显微镜确定了注入对纯钨的表面形态的影响。高温(> 800 C)植入后,氘似乎没有影响钨的表面。氦气在相同温度下产生了约4 x 1016离子/ cm2的多孔表面结构。随着温度和通量的增加,孔的尺寸增大而密度减小。

著录项

  • 作者

    Cipiti, Benjamin B.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号