首页> 外文学位 >Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications.
【24h】

Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications.

机译:用于生物和生物外应用的核酸中的三唑键和骨架分支。

获取原文
获取原文并翻译 | 示例

摘要

The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems.;Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating well-defined architectures based solely on DNA.;While backbone branched DNAs are useful for nanotechnological applications, backbone branches in RNA occur in nature and are involved in the distinct but related processes of splicing, debranching and RNAi. Therefore we have developed protocols for the synthesis of backbone branched nucleic acids in the solid-phase using photoprotecting groups. Using the synthesized backbone branched RNAs we have uncovered a specific substrate requirement of debranching enzyme which distinguishes it from other homologous proteins with alternative functions.;Finally, through the marriage of click chemistry and backbone branches, we have produced useful progeny in the synthesis of lariat RNAs. We investigated the potential of these lariats as therapeutic agents by synthesizing siRNA sequences as lariats. We showed that these lariats are efficiently debranched by debranching enzyme and are able to induce an RNAi response in vivo. Altogether, the development of click chemistry and backbone branched nucleic acids represents a significant advantage in the ability to modify nucleic acid structure and affect its function. I envision that these methods can become generally useful to probe nucleic acid systems, useful nanomaterials and functional effectors in nucleic acid based therapies.
机译:核酸在生物学中的替代作用以及作为有用的纳米材料和治疗剂的潜力的最近增加的证据使得能够开发出有用的基于核酸的探针,精细的纳米结构和治疗效应子。对替代性核酸结构和功能,特别是RNA的研究取决于引入位点特异性修饰的能力,该位点修饰可提供有关核酸结构功能关系的线索或改变核酸功能。尽管可用的化学方法允许结合有用的标记物和分子,但它们的局限性在于其乏味的结合条件或所安装探针的不稳定性。现在,利用RNA进行点击化学的开发和优化可提供一种稳健且正交的结合方法,同时提供稳定的结合物。我们以酶促方式(而非仅以固相方式)引入点击反应基团的能力允许修饰更大,更多与细胞相关的RNA。此外,通过点击化学将修饰的RNA与更大的RNA构建体连接代表了对传统连接技术的改进。我们确定通过点击化学产生的三唑键在多种基于核酸的生物系统中是兼容的。点击化学也已开发用于生物学以外的应用,特别是与DNA。我们已将其用途扩展到生成有用的聚合物-DNA缀合物,该缀合物可形成可控的软纳米颗粒,从而利用DNA的特性,即DNA杂交和计算。此外,我们已经产生了蛋白质-DNA结合物,并通过DNA杂交介导了组装的蛋白质-聚合物杂种。在这些反应中使用点击化学使得这些非天然结合物的合成容易。我们还通过点击化学方法开发了骨架支链DNA,并显示这些支链DNA可用于仅基于DNA生成定义明确的体系结构。;虽然骨架支链DNA可用于纳米技术应用,但RNA的骨架支链自然存在并涉及在截然不同但相关的剪接,脱支和RNAi过程中。因此,我们已经开发了使用光保护基团在固相中合成骨架分支核酸的方案。使用合成的主链分支RNA,我们发现了脱支酶的特定底物要求,使其与其他具有替代功能的同源蛋白区分开;最后,通过单击化学和主链分支的结合,我们在套索蛋白的合成中产生了有用的后代RNA。我们通过合成作为套索的siRNA序列研究了这些套索作为治疗剂的潜力。我们表明,这些套索被脱支酶有效地支化,并且能够在体内诱导RNAi应答。总而言之,点击化学和骨架支链核酸的发展在修饰核酸结构和影响其功能的能力方面表现出显着的优势。我预见到这些方法通常可用于探测基于核酸的疗法中的核酸系统,有用的纳米材料和功能效应子。

著录项

  • 作者

    Paredes, Eduardo.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemistry General.;Chemistry Biochemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号