首页> 外文学位 >Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential Equations.
【24h】

Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential Equations.

机译:非线性偏微分方程的Wronskian,Grammian和Pfaffian解。

获取原文
获取原文并翻译 | 示例

摘要

It is significantly important to search for exact soliton solutions to nonlinear partial differential equations (PDEs) of mathematical physics. Transforming nonlinear PDEs into bilinear forms using the Hirota differential operators enables us to apply the Wronskian and Pfaffian techniques to search for exact solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation with not only constant coefficients but also variable coefficients under a certain constraint &parl0;ut+a 1tuxxy+3a 2tuxu y&parr0;x+a3 tuty-a4 tuzz+a5 t&parl0;ux+a3 tuy&parr0;=0. .;However, bilinear equations are the nearest neighbors to linear equations, and expected to have some properties similar to those of linear equations. We have explored a key feature of the linear superposition principle, which linear differential equations have, for Hirota bilinear equations, while intending to construct a particular sub-class of N-soliton solutions formed by linear combinations of exponential traveling waves. Applications are given for the (3+1) dimensional KP, Jimbo-Miwa (JM) and BKP equations, thereby presenting their particular N-wave solutions. An opposite question is also raised and discussed about generating Hirota bilinear equations possessing the indicated N-wave solutions, and two illustrative examples are presented.;Using the Pfaffianization procedure, we have extended the generalized KP equation to a generalized KP system of nonlinear PDEs. Wronskian-type Pfaffian and Gramm-type Pfaffian solutions of the resulting Pfaffianized system have been presented. Our results and computations basically depend on Pfaffian identities given by Hirota and Ohta. The Plücker relation and the Jaccobi identity for determinants have also been employed.;A (3+1)-dimensional JM equation has been considered as another important example in soliton theory, uyt-uxxxy-3&parl0;uxu y&parr0;x+3uxz=0. Three kinds of exact soliton solutions have been given: Wronskian, Grammian and Pfaffian solutions. The Pfaffianization procedure has been used to extend this equation as well.;Within Wronskian and Pfaffian formulations, soliton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives of Wronskian and Pfaffian type determinants and the determinants involved are made of functions satisfying linear systems of differential equations. This connection between nonlinear problems and linear ones utilizes linear theories in solving soliton equations.;Bäcklund transformations are another powerful approach to exact solutions of nonlinear equations. We have computed different classes of solutions for a (3+1)-dimensional generalized KP equation based on a bilinear Bäcklund transformation consisting of six bilinear equations and containing nine free parameters.;A variable coefficient Boussinesq (vcB) model in the long gravity water waves is one of the examples that we are investigating, ut+a 1tuxy+a 2tuw x+a3t vx=0, vt+b 1twv x+2vuy+uvy+b 2t&parl0;ux wy-&parl0;uy&parr0;2&parr0;+ b3tv xy+b4t uxyy=0, where wx = uy. Double Wronskian type solutions have been constructed for this (2+1)-dimensional vcB model.
机译:寻找数学物理非线性偏微分方程(PDE)的精确孤子解非常重要。使用Hirota微分算子将非线性PDE转换为双线性形式,使我们能够应用Wronskian和Pfaffian技术来搜索(3 + 1)维广义Kadomtsev-Petviashvili(KP)方程的精确解,该方程不仅具有常数系数,而且具有可变系数在一定约束下的系数&parl0; ut + a 1tuxxy + 3a 2tuxu y&parr0; x + a3 tuty-a4 tuzz + a5 t&parl0; ux + a3 tuy&parr0; = 0。但是,双线性方程是线性方程的最接近邻居,并且期望具有与线性方程相似的性质。我们已经探索了线性叠加原理的关键特征,对于Hirota双线性方程,线性微分方程具有该特性,同时旨在构造由指数行波的线性组合形成的N孤子解的特定子类。给出了(3 + 1)维KP,Jimbo-Miwa(JM)和BKP方程的应用,从而介绍了其特定的N波解。关于产生具有所示N波解的Hirota双线性方程组,也提出了一个相反的问题,并给出了两个说明性的例子。通过Pfaffianization过程,我们将广义KP方程扩展到非线性PDE的广义KP系统。提出了所得Pfaffianized系统的Wronskian型Pfaffian和Gramm型Pfaffian解。我们的结果和计算基本上取决于Hirota和Ohta给出的Pfaffian身份。还使用了Plücker关系和行列式的雅科比恒等式;(3 + 1)维JM方程被认为是孤子理论中的另一个重要例子,uyt-uxxxy-3&parl0; uxu y&parr0; x + 3uxz = 0 。给出了三种精确的孤子解:Wronskian,Grammian和Pfaffian解。 Pfaffianization程序也用于扩展该方程。在Wronskian和Pfaffian公式中,孤子解和有理解通常表示为Wronskian和Pfaffian型行列式的对数导数,并且所涉及的行列式由满足线性的函数组成微分方程组。非线性问题和线性问题之间的这种联系利用线性理论来求解孤子方程。;贝克伦德变换是另一种有效求解非线性方程组的有效方法。我们基于双线性Bäcklund变换计算了(3 + 1)维广义KP方程的不同类解,该双线性Bäcklund变换由六个双线性方程式和包含九个自由参数组成;长重力水中的可变系数Boussinesq(vcB)模型wave是我们正在研究的示例之一,ut + a 1tuxy + a 2tuw x + a3t vx = 0,vt + b 1twv x + 2vuy + uvy + b 2t&parl0; ux wy-&parl0; uy&parr0; 2&parr0; + b3tv xy + b4t uxyy = 0,其中wx = uy。为此(2 + 1)维vcB模型构造了Double Wronskian型解决方案。

著录项

  • 作者

    Abdeljabbar, Alrazi.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号