首页> 外文学位 >Structural pathways for signaling in photoactive yellow protein.
【24h】

Structural pathways for signaling in photoactive yellow protein.

机译:在光敏黄色蛋白中发出信号的结构途径。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the structural bases for regulation and signaling in proteins is a central problem in biophysics. What are the active and inactive conformations of a protein and how does a protein traverse a complex energy landscape as it passes from one to another? To answer this, we require the structures of all intermediates and the rates by which they interconvert, i.e. the chemical kinetic mechanism. We also must identify those residues responsible for relaying the structural signal from one part of the protein to the next and how such structural signal is related to a biological signal. In the blue light photoreceptor photoactive yellow protein (PYP) from Halorhodospira halophila, a member of the PAS domain superfamily, absorption of light by its chromophore leads to conformational changes in the protein associated with differential signaling activity as it executes a reversible photocycle associated with red and blue-shifted intermediates. Time-resolved Laue crystallography allows structural snapshots (as short as 150 picoseconds) of high crystallographic resolution (∼1.6 A) to be taken of a protein as it functions. Here we analyze by singular value decomposition comprehensive time resolved crystallographic data sets of wild-type P YP and its E46Q mutant, comprising tens of time points throughout the photocycles spanning nanoseconds to seconds. We identify and refine the structures of distinct intermediates and provide a plausible chemical kinetic mechanism for their interconversion. In both WT and E46Q PYP, a clear structural progression is visible through these intermediates, in which a signal generated at the chromophore propagates through a distinct structural pathway through conserved residues and results in structural changes near the N-terminus, over 20 A distant from the chromophore. While experiments to test the biological significance of these residues is not possible in PYP from H. halophila, whose signaling partners are yet unidentified, it is possible to test them in the PYP domain from the sensor histidine kinase Ppr from Rhodocista centenaria, whose static crystal structure we have also solved. The combination of these results from time-resolved and conventional static crystallography, along with previous work on PAS domains, are consistent with a general model for PAS domain-mediated signal transduction.
机译:了解蛋白质调控和信号传导的结构基础是生物物理学中的中心问题。蛋白质的活性和非活性构象是什么?当蛋白质从一个相互传递到另一个时,它如何穿越复杂的能量格局?为了回答这个问题,我们需要所有中间体的结构和它们相互转化的速率,即化学动力学机理。我们还必须确定负责将结构信号从蛋白质的一部分传递到另一部分的那些残基,以及这些结构信号如何与生物学信号相关。在PAS域超家族成员Halhalhodospira halophila的蓝色光感受器光敏黄色蛋白(PYP)中,其发色团吸收光会导致该蛋白发生构象变化,并与信号传导活性相关,因为它执行与红色相关的可逆光周期和蓝移的中间体。时间分辨Laue晶体学可以使蛋白质在发挥功能时获得高晶体学分辨率(约1.6 A)的结构快照(短至150皮秒)。在这里,我们通过奇异值分解来分析野生型P YP及其E46Q突变体的综合时间分辨晶体学数据集,该数据集涵盖了整个光循环中数十个时间点,这些时间点跨越了纳秒至几秒。我们确定和完善不同中间体的结构,并为它们的相互转化提供合理的化学动力学机制。在WT和E46Q PYP中,通过这些中间体可见清晰的结构进展,其中发色团产生的信号通过保守的残基通过独特的结构途径传播,并导致N端附近的结构发生变化,距离20 A以上发色团。虽然无法通过嗜盐嗜血菌的PYP来测试这些残基的生物学意义的实验(其信号传递伙伴尚未确定),但是可以通过来自Rhodocista centenaria的传感器组氨酸激酶Ppr(在其静态晶体中)在PYP域中对其进行测试。结构我们也解决了。时间分辨和常规静态晶体学的这些结果的结合,以及以前在PAS域上的工作,与PAS域介导的信号转导的一般模型是一致的。

著录项

  • 作者

    Rajagopal, Sudarshan.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Biophysics General.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号