首页> 外文学位 >Tunable ultrafast coherent light in the soft and hard X-ray regions of the spectrum: Phase matching of extreme high-order harmonic generation.
【24h】

Tunable ultrafast coherent light in the soft and hard X-ray regions of the spectrum: Phase matching of extreme high-order harmonic generation.

机译:在光谱的软和硬X射线区域中可调谐的超快相干光:极端高次谐波生成的相位匹配。

获取原文
获取原文并翻译 | 示例

摘要

Using the extreme nonlinear optical process of high harmonic generation, light from an ultrafast infrared laser can be coherently upconverted to generate fully coherent and laser-like beams in the extreme ultraviolet region of the spectrum, with femtosecond-to-attosecond pulse duration. However, progress in extending extreme nonlinear optical techniques into the soft and hard X-ray regions of the spectrum has been hindered to-date, not by the inability of the high harmonic process to generate X-rays, but by the lack of techniques for phase matching this highly nonlinear process. This thesis reports on significant experimental and theoretical advances in two alternative approaches to obtain bright high harmonic emission at keV photon energies. First, using high harmonic generation from ions in a plasma waveguide, it was demonstrated that one can extend significantly the energy range of the generated photons by increasing the laser intensity. At high driving fields, the plasma waveguide prevents laser defocusing, reduces ionization loses, allows to design the ion species independently from the laser dynamics, and provides more uniform propagation conditions amenable to apply quasi phase matching techniques. All-optical quasi phase matching techniques---high-order difference-frequency mixing and grating-assisted phase matching---are proposed in this scheme. Second, in a contrasting regime, using high harmonic generation from weakly-ionized neutral atoms in a hollow waveguide and by increasing the driving laser wavelength, it is shown for the first time that there is no maximum photon energy limit for perfect phase matching of the process. In the past decade prior to our demonstration, it was widely accepted that conventional phase matching of high harmonic generation is limited to about 100 eV. In analogy with the single-atom cutoff energy in a microscopic picture, we introduce the concept of a phase matching cutoff energy in a macroscopic picture. A simple phase-matching cutoff rule is obtained, describing the maximum photon energy that can be fully phase-matched as a function of the laser wavelength. We verify our scaling predictions experimentally by demonstrating phase matching in the soft X-ray region of the spectrum (inside the water window of the spectrum), using ultrafast mid-IR driving laser pulses and extended, high pressure, weakly ionized gas medium. We also show through calculations that scaling of the overall conversion efficiency is surprisingly favorable as the wavelength of the driving laser is increased, making tabletop, fully coherent, multi-keV X-ray sources feasible. The rapidly decreasing microscopic single-atom yield, predicted for harmonics driven by longer-wavelength lasers, is compensated macroscopically by an increased optimal pressure for phase matching and a rapidly decreasing reabsorption of the generated X-rays. In addition, this simple and experimentally attractive regime represents prospects to macroscopically isolate femtosecond-to-attosecond-to-zeptosecond x-ray pulses through phase matching gating. The perfect phase matching and quasi phase matching techniques presented here can provide either broadband or quasi-monochromatic, tunable, ultrafast light in the soft and hard X-ray regions of the spectrum that can be used for applications in microscopy, nanoscience and nanotechnology, X-ray nonlinear optics, as well as wide range of fundamental studies of materials and molecular dynamics.
机译:使用高谐波产生的极端非线性光学过程,可以将超快红外激光发出的光进行相干上转换,以在光谱的极紫外区域内产生完全相干且类似激光的光束,并具有飞秒到亚秒级的脉冲持续时间。但是,迄今为止,将极限非线性光学技术扩展到光谱的软和硬X射线区域的进展一直受到阻碍,这不是由于高次谐波过程无法生成X射线,而是由于缺乏用于相位匹配这个高度非线性的过程。本文报道了在keV光子能量下获得明亮的高谐波发射的两种替代方法的重大实验和理论进展。首先,利用等离子体波导中离子的高次谐波产生,已证明可以通过增加激光强度来显着扩展产生的光子的能量范围。在高驱动场下,等离子波导可防止激光散焦,减少电离损失,允许独立于激光动力学设计离子种类,并提供适用于准相位匹配技术的更均匀的传播条件。该方案提出了全光准相位匹配技术-高阶差频混频和光栅辅助相位匹配-。其次,在一种相反的情况下,利用中空波导中弱电离的中性原子产生的高次谐波并通过增加驱动激光波长,首次表明最大光子能量限制没有一个完美的相位匹配。处理。在我们进行演示之前的过去十年中,高谐波产生的常规相位匹配被限制在大约100 eV,这一点已被广泛接受。与微观图像中的单原子截止能量类似,我们引入了宏观图像中的相位匹配截止能量的概念。获得了一个简单的相位匹配截止规则,该规则描述了可以完全相位匹配的最大光子能量随激光波长的变化。我们使用超快的中红外驱动激光脉冲和扩展的高压弱电离气体介质,通过演示光谱的软X射线区域(光谱的水窗内)的相位匹配,通过实验验证了定标预测。我们还通过计算表明,随着驱动激光器波长的增加,总转换效率的缩放比例出乎意料地有利,这使得台式,全相干,多keV X射线源可行。宏观上,为长波长激光驱动的谐波预测的微观单原子产率的迅速下降,可以通过增加用于相匹配的最佳压力并迅速降低所产生的X射线的吸收而得到宏观补偿。另外,这种简单且具有实验吸引力的方案代表了通过相位匹配选通从宏观上隔离飞秒到飞秒到飞秒的X射线脉冲的前景。此处介绍的完美相位匹配和准相位匹配技术可以在光谱的软和硬X射线区域提供宽带或准单色,可调,超快光,可用于显微镜,纳米科学和纳米技术,X射线非线性光学以及材料和分子动力学的广泛基础研究。

著录项

  • 作者

    Popmintchev, Tenio.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Molecular.;Physics Optics.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号