首页> 外文学位 >L1 Minimization for Sparse Audio Processing.
【24h】

L1 Minimization for Sparse Audio Processing.

机译:稀疏音频处理的L1最小化。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores L1-based methods for sparse signal processing, and in particular their application to audio processing. Real-world sound signals are often sparse; that is, they can be approximated using a small number of elements from an overcomplete dictionary. Prior work on sparse methods for sound has primarily used greedy heuristics such as matching pursuit. An alternate class of methods involves using the L1 norm to construct a convex optimization problem, whose solution we expect to be a sparse approximation of the input signal. The resulting optimization problem can be solved using an iterative numerical method. We develop new, general methods for solving such problems and evaluate their performance for audio applications including denoising, inpainting, and spectral estimation.;Our first contribution is a novel numerical method for solving constrained basis pursuit, which finds a sparse approximation of an input signal within some fixed error tolerance. The related unconstrained basis pursuit problem, by contrast, is more straightforward to solve but has a parameter which is less obviously related to the approximation error. Our approach is based on the alternating direction method of multipliers (ADMM). It applies to any dictionary which is a weighted tight frame, i.e., a composition of a diagonal operator and a tight frame. We demonstrate that our method solves these constrained problems more efficiently than other recently developed approaches.;We then apply our numerical method to the problem of spectral estimation, in particular for audio signals. We split the input signal into short overlapping segments and perform a separate constrained basis pursuit on each individual segment. We use the Overcomplete Discrete Fourier Transform as the dictionary for this problem. We demonstrate that basis pursuit produces two-sparse approximations for components with "interharmonic" frequencies not found in the dictionary. We furthermore show how to integrate a tapered windowing function into the basis pursuit problem. This change enables us to recover more components of the original signal while maintaining the sparsity of the approximation.;Next we explore analysis-type convex L 1 problems, which were previously used for image and video processing. Solutions to these problems have fewer artifacts than those of synthesis-type problems such as basis pursuit. Analysis problems can be solved efficiently when the dictionary is a tight frame. We use the Short-Time Fourier Transform, which satisfies the tight frame condition, for audio denoising and inpainting. We furthermore extend our ADMM-based numerical method to handle analysis-type problems.;Finally, we develop a numerical method for solving unconstrained basis pursuit problems involving weighted Fourier bases. We improve upon cyclic coordinate descent, which requires O(N2) operations per coordinate sweep. By using a multilevel decomposition scheme, we are able to compute a coordinate sweep in O(N log N) operations---without performing any explicit Fourier transforms. In some tests, runtime is an order of magnitude faster than other, more standard sparse methods. The work in this part is in collaboration with Tom Goldstein.
机译:本文探讨了基于L1的稀疏信号处理方法,特别是它们在音频处理中的应用。现实世界中的声音信号通常很少。也就是说,可以使用来自不完整字典的少量元素来近似它们。先前关于声音稀疏方法的研究主要使用贪婪启发式方法,例如匹配追踪。另一类方法涉及使用L1范数构造凸优化问题,我们希望其解决方案是输入信号的稀疏近似。最终的优化问题可以使用迭代数值方法解决。我们开发了新的通用方法来解决此类问题并评估其在音频应用中的性能,包括降噪,修复和频谱估计。;我们的第一个贡献是解决约束基础追踪的新型数值方法,该方法找到了输入信号的稀疏近似在一定的容错范围内。相比之下,相关的无约束基础追求问题更易于解决,但其参数与逼近误差的联系不太明显。我们的方法基于乘法器的交替方向方法(ADMM)。它适用于任何带有加权紧框架的字典,即对角线运算符和紧框架的组合。我们证明了我们的方法比其他最近开发的方法更有效地解决了这些受约束的问题。然后,我们将数值方法应用于频谱估计的问题,尤其是对于音频信号。我们将输入信号分成短的重叠段,并在每个单独的段上执行单独的约束基础追踪。我们使用过完全离散傅立叶变换作为此问题的字典。我们证明了基本追踪会为字典中找不到的“间谐波”频率分量产生两稀疏近似。我们进一步展示了如何将锥形加窗函数集成到基本追踪问题中。这种变化使我们能够恢复原始信号的更多分量,同时保持近似值的稀疏性。接下来,我们探索分析型凸L 1问题,该问题以前曾用于图像和视频处理。与诸如基础追求之类的合成型问题相比,这些问题的解决方案具有更少的伪像。当字典紧凑时,可以有效地解决分析问题。我们使用满足紧密帧条件的短时傅立叶变换进行音频降噪和修复。我们进一步扩展了基于ADMM的数值方法来处理分析类型的问题。最后,我们开发了一种数值方法来解决涉及加权傅立叶基数的无约束基追求问题。我们改进了循环坐标下降,该坐标下降要求每个坐标扫描进行O(N2)个操作。通过使用多级分解方案,我们能够在O(N log N)个操作中计算坐标扫描-无需执行任何显式的傅立叶变换。在某些测试中,运行时比其他更标准的稀疏方法快一个数量级。这部分的工作是与汤姆·戈德斯坦合作的。

著录项

  • 作者

    Jacobson, Judah Solomon.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号