首页> 外文学位 >Closing the loop: Architectures and algorithms for real-time control over wireless networks.
【24h】

Closing the loop: Architectures and algorithms for real-time control over wireless networks.

机译:闭环:用于无线网络实时控制的体系结构和算法。

获取原文
获取原文并翻译 | 示例

摘要

Wireless Cyber-Physical Systems (CPS) are fundamentally constrained by the tight coupling and closed-loop control of physical processes. To address actuation in these systems there is a strong need to re-think the system architecture, including communication architectures and protocols for reliability, coordination and control. The objective of this work is to propose algorithms and architectures for control over wireless networks that ensure the desired closed-loop behavior, while maintaining ease of implementation in real-world networks. We focus on two domains, Industrial and Medical CPS.;Unlike standard control approaches that statically map a set of tasks to a specific physical node at design time, to deal with the inherit unreliability of wireless nodes and links we proposed two programming abstractions where control functionalities are assigned to a group of wireless nodes as a single component. Furthermore, by providing composable architectures, we have been able to harness the benefits of the use of wireless networks in Industrial CPS, and to design modular, 'plug-n-play' automation systems. Along these lines, in this work we introduce two orthogonal, composable approaches for in-network control: Embedded Virtual Machine (EVM) and Wireless Control Networks (WCN).;EVM provides software support for centralized in-network control, where control functionality can be migrated from one node to another to adapt to changes in network conditions. In the context of process and discrete control, an EVM is the distributed runtime system that dynamically selects primary-backup sets of controllers given spatial and temporal constraints of the underlying wireless network. The EVM architecture allows for runtime extension of the system functionalities along with the development of an automated design flow: from Simulink to platform-independent domain specific languages, and subsequently, to platform-dependent code generation. WCN is a distributed architecture used for control over multi-hop networks where each node acts as a local dynamical compensator, causing the network itself to act as a controller. The proposed scheme has several benefits, including low overhead, easy scheduling, and compositionality. We present methods for WCN synthesis that can guarantee system stability, robustness to link and node failures, and optimality. Furthermore, we provide conditions on the network topology for which such WCN configurations exist. To demonstrate effectiveness of the EVM and WCN, we present their use on practical industrial case studies in discrete and process control.;In the Medical CPS domain, we introduce a methodology for the analysis of safety properties of closed-loop medical device systems, and illustrate its use on a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with uncertain parameters, with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. To guarantee system applicability when wireless networks are used for control, we extended the initial system design to provide open-loop safety under network failure. Finally, to address the need for rigorous model-driven design tools to generate verified code from verified software models, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified timed-automata models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We demonstrate how UPP2SF is used in the model-driven design of medical device software whose model is (a) designed and verified in UPPAAL, (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage.
机译:无线网络物理系统(CPS)从根本上受到物理过程的紧密耦合和闭环控制的约束。为了解决这些系统中的致动,强烈需要重新考虑系统架构,包括用于可靠性,协调和控制的通信架构和协议。这项工作的目的是提出用于控制无线网络的算法和体系结构,这些算法和体系结构可确保所需的闭环行为,同时保持在实际网络中易于实施。我们专注于工业CPS和医疗CPS两个领域;与标准控制方法不同,在设计时将一组任务静态映射到特定的物理节点,以解决无线节点和链路的继承不可靠性问题,我们提出了两种编程抽象:将功能作为单个组件分配给一组无线节点。此外,通过提供可组合的体系结构,我们已经能够利用在工业CPS中使用无线网络的好处,并设计出模块化的“即插即用”自动化系统。沿着这些思路,在这项工作中,我们介绍了两种用于网络内控制的正交,可组合方法:嵌入式虚拟机(EVM)和无线控制网络(WCN)。;EVM为集中式网络内控制提供软件支持,控制功能可以从一个节点迁移到另一个节点以适应网络条件的变化。在过程和离散控制的上下文中,EVM是分布式运行时系统,它在基础无线网络受到空间和时间限制的情况下,动态选择控制器的主后备集。 EVM体系结构允许系统功能的运行时扩展以及自动设计流程的开发:从Simulink到独立于平台的领域特定语言,再到独立于平台的代码生成。 WCN是一种分布式体系结构,用于控制多跳网络,其中每个节点都充当本地动态补偿器,从而使网络本身充当控制器。所提出的方案具有多个优点,包括低开销,易于调度和组成。我们提出了WCN综合的方法,这些方法可以保证系统稳定性,链接和节点故障的鲁棒性以及最优性。此外,我们提供了存在此类WCN配置的网络拓扑条件。为了证明EVM和WCN的有效性,我们将其用于离散和过程控制的实际工业案例研究中。在医疗CPS领域,我们介绍了一种用于分析闭环医疗设备系统安全特性的方法,以及说明其在具有临床重要性的系统上的使用。我们的方法结合了对系统详细模型的基于仿真的分析,该模型包含具有不确定参数的连续患者动态,以及对更抽象的定时自动机模型的模型检查。我们表明,两个模型之间的关系保留了定时行为的关键方面,可确保安全性分析的保守性。为了确保使用无线网络进行控制时系统的适用性,我们扩展了初始系统设计,以在网络故障时提供开环安全性。最后,为了满足使用严格的模型驱动设计工具从经过验证的软件模型生成经过验证的代码的需求,我们开发了UPP2SF模型转换工具,该工具可以方便地将经过验证的定时自动机模型(在UPPAAL中)自动转换为可以模拟和测试(在Simulink / Stateflow中)。我们演示了如何将UPP2SF用于医疗器械软件的模型驱动设计,该模型的模型是(a)在UPPAAL中设计和验证的,(b)自动转换为Stateflow以进行基于模拟的测试,然后(c)自动生成为模块化的用于计时相关错误的硬件级集成测试的代码。此外,我们展示了如何在设计阶段的早期将UPP2SF用于最坏情况的执行时间估计。

著录项

  • 作者

    Pajic, Miroslav.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 288 p.
  • 总页数 288
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号