首页> 外文学位 >Fields, forces, and flows: What laboratory experiments reveal about the dynamics of arched plasma structures.
【24h】

Fields, forces, and flows: What laboratory experiments reveal about the dynamics of arched plasma structures.

机译:场,力和流:实验室实验揭示了拱形等离子体结构的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic flux tubes and, more generally, magnetic field structures that link a plasma volume to its boundary are prominent features in plasma systems of significant interest, such as the solar atmosphere and the interiors of magnetic fusion devices.;In order to study the fundamental physics of these systems, experiments were conducted in the laboratory using a magnetized plasma gun to produce individual arched, plasma-filled magnetic flux tubes. More complex plasma topologies were also explored. The absence of confining walls allowed plasmas to evolve freely—which they did, very dynamically, over the course of several microseconds. The experiment setup featured excellent reproducibility, extensive diagnostic accessibility, and several tunable parameters. In particular, a plasma "color coding" technique and magnetic measurements provided new and interesting results.;The single arches or "loops" of plasma exhibited sustained axial collimation, even during a dramatic evolution from a small, semicircular arch into a kinked structure up to seven times larger. The loops' magnetic structure was verified as consistent with that of a flux tube, and their evolution was found to be in quantitative agreement with two interrelated magnetohydrodynamic (MHD) theories: a simplified hoop force model for the axis expansion and a recently proposed MHD flow model for the collimation. More complex plasma structures were found to be similarly dominated by the effects of the magnetic field, exhibiting behavior that was highly repeatable but varied significantly from one magnetic structure to the next.;These findings suggest that MHD-driven flows are an important mechanism for the transport of plasma in arched flux tubes and other magnetic plasma structures. Because MHD has no inherent length scale, the forces driving the evolution of these experiments are expected to similarly affect other systems with low plasma beta and a high Lundquist number.
机译:磁通量管以及将血浆体积与其边界联系起来的磁场结构是人们非常关注的等离子体系统的显着特征,例如太阳大气和磁聚变装置的内部。;为了研究基本物理学在这些系统中,使用磁化等离子枪在实验室中进行了实验,以生产单个拱形,等离子填充的磁通量管。还探索了更复杂的等离子体拓扑。由于没有限制壁,血浆可以自由发展-它们在几微秒的过程中动态变化。实验设置具有出色的可重复性,广泛的诊断可访问性以及几个可调参数。特别是,等离子体“彩色编码”技术和磁测量提供了新的有趣结果。等离子体的单个弓形或“环”即使在从小半圆形弓形到扭结结构的急剧演变过程中也表现出持续的轴向准直。到大七倍验证了线圈的磁结构与通量管的磁结构一致,发现它们的演化与两种相互关联的磁流体动力学(MHD)理论在数量上是一致的:用于轴扩展的简化环向力模型和最近提出的MHD流动准直的模型。发现更复杂的等离子体结构同样受到磁场的影响,表现出高度可重复的行为,但从一个磁结构到另一个磁结构变化显着。这些发现表明,MHD驱动的流动是产生磁场的重要机制。等离子体在拱形通量管和其他磁性等离子体结构中的传输。由于MHD没有固有的长度尺度,因此预计推动这些实验发展的力量会类似地影响其他血浆β低且伦德奎斯特数高的系统。

著录项

  • 作者

    Stenson, Eve.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号