首页> 外文学位 >Enzymatic activity preservation through entrapment within degradable hydrogel networks.
【24h】

Enzymatic activity preservation through entrapment within degradable hydrogel networks.

机译:通过截留在可降解水凝胶网络中来保持酶活性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small molecules and biosensors. Biogels with positive or negative monomer moiety functionalities were also investigated to increase enzyme-matrix interactions and enzyme stability. The researched entrapment method illustrates the potential to sterically hinder and diffusively impede enzymes from performing their function, potentially enabling the reactivation of the enzyme at a site and time dictated by the user by degrading the crosslinks of the network.
机译:本文旨在设计和开发一种“生物凝胶”。一种可再生,非生物和生物相容的聚合物水凝胶基质,可延长酶的稳定性,从而可快速生产生物分子。所研究的包封方法可以在友好的环境中保留酶的活性,同时在pH值增加的环境挑战中抵抗活性降低。这些生物凝胶可用于多种应用,包括重复生产小分子和生物传感器。实现了五个主要目标:1)制备了能够在包埋后保持酶促功能的生物凝胶; 2)确定了生物凝胶活性对交联剂类型和交联密度的依赖性; 3)比较了生物凝胶成分对贮藏后持续活性的影响; 4)评估了生物凝胶活性对带电单体部分的依赖性,并且5)从前四个目标中获得的优化知识综合起来,用于确定在pH值增加到8时,水凝胶中酶的保护作用。丙烯酰胺(ACR)凝胶中的半乳糖苷酶(乳糖酶)酶与聚(乙二醇)二丙烯酸酯(PEGDA,可通过水解降解)或-亚甲基双丙烯酰胺(BIS,不可降解)交联。初始水凝胶截留将ACR / PEGDA凝胶的活性降低至40%,而ACR / BIS生物凝胶的初始活性降低了75%。一旦被捕获,这些酶在存在环境挑战的情况下会抵抗活性降低,例如将pH从7更改为8。当将生物凝胶的pH挑战为8时,活性保留与PEGDA交联剂密度呈正相关;当pH值为8时,这些活性会降低。与仅保留23%的基于溶液的对照相比,在30至40摩尔%PEGDA生物凝胶中保留率从48%增至91%。当受到pH 7干扰时,保留活性对于生物凝胶应用是有利的,包括重复生产所需的小分子和生物传感器。还研究了具有正或负单体部分功能的生物凝胶,以增加酶-基质相互作用和酶稳定性。所研究的诱捕方法说明了在空间上阻碍和扩散地阻止酶发挥其功能的潜力,从而有可能通过降解网络的交联键,在用户指定的位置和时间重新激活酶。

著录项

  • 作者

    Mariani, Angela Marie.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Biology Molecular.;Engineering Materials Science.;Engineering General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号