首页> 外文学位 >Molecular mechanisms regulating G protein signaling in brain and heart: Role of R7 RGS proteins and their binding partners.
【24h】

Molecular mechanisms regulating G protein signaling in brain and heart: Role of R7 RGS proteins and their binding partners.

机译:调节脑和心脏中G蛋白信号传导的分子机制:R7 RGS蛋白及其结合伴侣的作用。

获取原文
获取原文并翻译 | 示例

摘要

G Protein Coupled Receptor (GPCR) signaling pathways convert signals from the extracellular environment into cellular responses, which is critically important for neurotransmitter action both in central and peripheral nervous systems. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as Regulators of G protein Signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals.;One member of R7 RGS family, RGS9-2 has been previously implicated as a key regulator of dopamine and opioid signaling pathways in the basal ganglia of the brain, where it mediates motor control and reward behavior. Dynamic association of RGS9-2 with R7BP (R7 family Binding Protein) is critically important for the regulation of RGS9-2 expression level by proteolytic mechanisms. Changes in RGS9-2 expression are observed in response to a number of signaling events and are thought to contribute to the plasticity of the neurotransmitter action. To unravel the molecular mechanisms regulating levels of RGS9-2 upon its dissociation from R7BP we developed a novel application of the quantitative proteomics approach to monitor interactome dynamics of RGS9-2 in mice. We show that a molecular chaperone HSC70 (Heat Shock Cognate protein 70) identified by this approach is a critical regulator of RGS9-2 expression. HSC70 binds the intrinsically disordered C-terminal domain of RGS9-2 upon the dissociation of R7BP•RGS9-2 complex, and targets the complex to degradation.;In addition to their critical role in shaping neurotransmitter response in the brain, RGS proteins can regulate function of peripheral organs by modulating their responses to the influences of autonomic nervous system. The role of RGS proteins in the regulation of cardiac function and heart rate has received significant attention in the recent years. With over 30 RGS proteins identified, their specific roles in heart physiology remain to be established. Parasympathetic autonomic influence plays an important role in shaping cardiac output acting to decrease heart rate and counteract the pro-arrhythmic effects of sympathetic activation. Acetylcholine (ACh) released from post-ganglionic parasympathetic neurons activates M2 muscarinic receptor (M2R) and its downstream effector, potassium channel IKACh, in pacemaker cells and atrial myocytes. This leads to cell hyperpolarization and ultimately, decreased heart rate (HR). The second part of the dissertation demonstrates cardiac expression of RGS6 member of R7 RGS family, which has been previously thought to be a neuron-specific regulator. Elimination of RGS6 in mice results in potentiated M2R-IKACh signaling, as evidenced by prolonged deactivation kinetics of IKACh in cardiomyocytes, mild resting bradycardia, and augmented HR deceleration in response to M2R activation. Furthermore, RGS6 specifically co-precipitates with one of the two subunits of IKACh, GIRK4 in transfected HEK293 cells. Direct binding to the effector channel might serve to facilitate RGS6-mediated modulation of parasympathetic influence on atrial myocytes and in mice.;Altogether, the findings comprising this dissertation demonstrate a novel role of RGS6 in regulation of cardiac function, as well as two novel protein-protein interactions of R7 RGS proteins. Identified protein complexes influence G protein signaling by either (i) altering the availability of the regulator (RGS9-2•HSC70), or (ii) by serving to co-localize the major pathway components (RGS6•GIRK4).
机译:G蛋白偶联受体(GPCR)信号通路将信号从细胞外环境转化为细胞反应,这对于中枢神经系统和周围神经系统的神经递质作用至关重要。迅速响应快速变化的刺激的能力需要及时失活G蛋白,这一过程由一系列称为G蛋白信号调节剂(RGS)的特殊蛋白控制。 R7组RGS蛋白(R7 RGS)由于在一系列重要的神经元过程的调节中起着关键作用,这些过程包括哺乳动物的视觉,运动控制,奖励行为和伤害感受。R7RGS家族的一个成员RGS9-2以前被认为是大脑基底神经节中多巴胺和阿片类信号通路的关键调节剂,在其中调节运动控制和奖励行为。 RGS9-2与R7BP(R7家族结合蛋白)的动态关联对于通过蛋白水解机制调节RGS9-2表达水平至关重要。响应许多信号传递事件,观察到RGS9-2表达的变化,并认为其有助于神经递质作用的可塑性。为了阐明调节RGS9-2从R7BP分离时的水平的分子机制,我们开发了定量蛋白质组学方法的新应用,以监测RGS9-2在小鼠中的相互作用组动力学。我们表明,通过这种方法鉴定的分子伴侣HSC70(热休克同源蛋白70)是RGS9-2表达的关键调节剂。 HSC70在R7BP•RGS9-2复合物解离后与RGS9-2固有的无序C末端结构域结合,并将该复合物靶向降解。;除了在塑造大脑神经递质反应中起关键作用外,RGS蛋白还可以调节通过调节它们对自主神经系统影响的反应来发挥其功能。近年来,RGS蛋白在调节心脏功能和心率中的作用受到了广泛的关注。已鉴定出30多种RGS蛋白,它们在心脏生理中的特定作用仍有待确定。副交感神经自主神经在塑造心输出量方面起着重要作用,以降低心率并抵消交感神经激活的心律失常作用。神经节后副交感神经元释放的乙酰胆碱(ACh)激活起搏器细胞和心房肌细胞中的M2毒蕈碱受体(M2R)及其下游效应子钾通道IKACh。这导致细胞超极化,并最终导致心率(HR)下降。论文的第二部分证明了R7 RGS家族的RGS6成员的心脏表达,该成员先前被认为是神经元特异性调节剂。小鼠中RGS6的消除导致增强的M2R-IKACh信号转导,如心肌细胞中IKACh延长的失活动力学,轻度静息性心动过缓以及响应M2R激活而增加的HR减速所证明。此外,RGS6在转染的HEK293细胞中与IKACh的两个亚基之一GIRK4特异性共沉淀。直接与效应子通道结合可能有助于促进RGS6介导的副交感神经对心房肌细胞和小鼠的调节。总体而言,本论文的研究结果证明了RGS6在调节心脏功能中的新作用以及两种新蛋白-R7 RGS蛋白的蛋白相互作用。鉴定出的蛋白质复合物通过(i)改变调节子的可用性(RGS9-2•HSC70)或(ii)通过共定位主要途径成分(RGS6•GIRK4)影响G蛋白信号传导。

著录项

  • 作者

    Posokhova, Ekaterina N.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biology Molecular.;Health Sciences Pharmacology.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号