首页> 外文学位 >A micromechanical investigation of the effect of fabric and particle shape on the response of granular soils.
【24h】

A micromechanical investigation of the effect of fabric and particle shape on the response of granular soils.

机译:织物和颗粒形状对粒状土壤响应影响的微力学研究。

获取原文
获取原文并翻译 | 示例

摘要

The response of granular soils to static or dynamic loads is a function of the void ratio, confining stresses, and also of the packing (or fabric) of the assemblage of the soil particles. A soil may have different fabrics under the same void ratio that can lead to drastic variations in small and large strain soil behavior. Such variations account for the dramatic contrast of behavior exhibited by the same soil when deposited by hydraulic fill, as compared to dry pluviation.;In this study, the impact of fabric on the dynamic behavior of granular soils was assessed using the discrete element method (DEM). These soils were idealized as collection of spherical and non-spherical particles that interact according to the Hertz's law. Different fabrics of the same soil were obtained by extracting particles from the weak or strong inter-particle force network. The associated stiffness properties were evaluated for various levels of confining stress under triaxial stress conditions. The conducted analysis showed that a soil with a given void ratio may have various fabrics associated with noticeably different elastic shear moduli. For isotropic conditions, the mechanical coordination number (average number of contacts per particle), and the particle shape, were found to be main factors that dictate soil stiffness properties. For a specific level of confining stress, the shear stiffness of a particulate soil is linked by a unique relation to the mechanical coordination number and the particle shape. For anisotropic conditions, the elastic stiffness properties were found to be a function of the particle orientation and the stress acting in the direction of loading.;Cyclic test simulations were also conducted under drained and undrained conditions. Soil fabric was found to have little impact on the shear modulus reduction as a function of strain amplitude (G/Gmax), and on damping ratio relations as well. In contrast, soil fabric was shown to be a major factor that dictates the rate of pore water pressure buildup and soil liquefaction. The conducted simulations confirmed that the low-strain stiffness properties (and not the void ratio or porosity) are good macro-scale parameters to characterize and predict the undrained response of granular soils.
机译:粒状土壤对静态或动态载荷的响应是空隙率,约束应力以及土壤颗粒集合的堆积(或织物)的函数。在相同的孔隙率下,土壤可能具有不同的织物,这可能导致大小应变土壤行为的剧烈变化。与干式耕作相比,这种变化解释了相同的土壤通过水力填充沉积时表现出的行为的戏剧性对比。;在这项研究中,使用离散元方法评估了织物对粒状土壤动力学行为的影响( DEM)。这些土壤被理想化为根据赫兹定律相互作用的球形和非球形颗粒的集合。通过从弱或强粒子间力网络中提取粒子,可以得到同一土壤的不同织物。在三轴应力条件下,针对各种水平的约束应力,评估了相关的刚度属性。进行的分析表明,具有给定孔隙比的土壤可能具有与明显不同的弹性剪切模量相关的各种织物。对于各向同性条件,发现机械配位数(每个粒子的平均接触数)和粒子形状是决定土壤刚度特性的主要因素。对于特定水平的约束应力,颗粒状土壤的剪切刚度通过与机械配位数和颗粒形状的唯一关系关联。对于各向异性条件,发现其弹性刚度特性是颗粒取向和在载荷方向上作用的应力的函数。在排水和不排水条件下也进行了循环试验模拟。发现土壤织物对剪切模量的减小几乎没有影响,而剪切模量的减小是应变幅度(G / Gmax)的函数,并且对阻尼比关系也没有影响。相反,土壤织物被证明是决定孔隙水压力增加和土壤液化速率的主要因素。进行的模拟证实,低应变刚度特性(而不是空隙率或孔隙率)是良好的宏观参数,用于表征和预测颗粒状土壤的不排水响应。

著录项

  • 作者

    Tsinginos, Chrysovalantis.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号