首页> 外文学位 >Toughness-dominated hydraulic fractures in cohesionless particulate materials.
【24h】

Toughness-dominated hydraulic fractures in cohesionless particulate materials.

机译:无粘性颗粒材料中以韧性为主的水力压裂。

获取原文
获取原文并翻译 | 示例

摘要

In this work we argue that toughness (resistance) to fracture propagation is an inherent characteristic of cohesionless particulate materials. This is significant for understanding hydraulic fracturing in geotechnical, geological, and petroleum applications.;We developed experimental techniques to quantify the initiation and propagation of fluid-driven fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, where the fluid flow is localized in thin, self-propagating, crack-like conduits. By analogy, we call these conduits 'cracks' or 'hydraulic fractures.' The experiments were performed on three particulate materials -- (1) fine sand, (2) silica flour, and (3) their mixtures. Based on the laboratory observations and scale and dimensional analyses, this work offers physical concepts to explain the observed phenomena. The goal of this study is to determine the controlling parameters of fracture behavior and to quantify their affects.;When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently the material is in tension at the fracture tip. In contrast, all parts of the cohesionless particulate material (including the tip zone of the hydraulic fracture) are likely to be in compression. In solid materials (with limited or no leakoff), the fluid lags behind the front of the propagating fracture. However, for fluid-driven fractures in cohesionless materials the lag zone is absent. The compressive stress state and the absence of the fluid lag are important characteristics of hydraulic fracturing in particulate materials with low, or negligible, cohesion. At present, two kinematic mechanisms of fracture initiation and propagation, consistent with both the compressive stress regime and the absence of the fluid lag, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the reduction of the effective stresses and material fluidization within the leakoff zone at the fracture tip.;Our experimental results show that the primary factor affecting peak (initiation) pressure and fracture aperture is the magnitude of the confining stresses. The morphology of the fracture (and fluid leakoff zone), however, changes significantly not only with stresses, but also with other parameters such as flow rate, fluid rheology, and permeability. Typical features of the observed fractures are multiple off-shoots (i.e., small branches, often seen on only one side of the fracture) and the bluntness of the fracture tip. The latter suggests the importance of inelastic deformation in the process of fracture propagation in cohesionless materials. Similar to solid materials, fractures propagate perpendicular to the least compressive stress.;Scaling indicates that, in experiments performed in the regime of limited leakoff (i.e., the thickness of the leakoff zone is much smaller than the fracture length), there is a high-pressure gradient in the leakoff zone, in the direction normal to the fracture. Fluid pressure does not decrease considerably along the fracture, however, due to the relatively wide fracture aperture. This suggests that hydraulic fractures in unconsolidated materials propagate within the toughness-dominated regime. Furthermore, the theoretical model of toughness-dominated hydraulic fracturing can be matched to the experimental pressure-time dependences with only one fitting parameter. Scale analysis shows that large apertures at the fracture tip correspond to relatively large 'effective' fracture (surface) energy, which can be orders of magnitude greater than typical for hard rocks.;The main conclusion of our work is that fractures in cohesionless materials can be considered 'thick.' This implies that the pressure drop in the fracture is insignificant. Therefore, the fractures in our tests can be considered toughness-dominated. Further, the primary parameter in determining the peak injection pressure is that of confining stresses. In this work we present a comprehensive experimental development focusing on four main parameters: confining stresses, fluid rheology, injection rate, and permeability. We use dimensional analysis and scaling relationships and compare our experimental results to a toughness-dominated model of hydraulic fracturing in cohesionless saturated materials. Finally, we compare the developed model to field data.
机译:在这项工作中,我们认为对裂纹扩展的韧性(抵抗力)是无粘性颗粒材料的固有特性。这对于理解岩土,地质和石油应用中的水力压裂具有重要意义。;我们开发了实验技术来量化饱和颗粒材料中流体驱动裂缝的萌生和扩展。压裂液被注入颗粒材料中,在那里,流体流局限于细的,自蔓延的,裂纹状的导管中。以此类推,我们将这些管道称为“裂缝”或“液压裂缝”。实验是在三种颗粒材料上进行的-(1)细砂,(2)硅粉和(3)它们的混合物。基于实验室的观察以及规模和尺寸分析,这项工作提供了物理概念来解释观察到的现象。这项研究的目的是确定裂缝行为的控制参数并量化其影响。当裂缝在固体中传播时,通过破坏材料结合而产生新的表面。因此,材料在断裂尖端处处于张紧状态。相反,无粘性颗粒材料的所有部分(包括水力压裂的尖端区域)都可能处于压缩状态。在固体材料中(泄漏很少或没有泄漏),流体滞后于传播裂缝的前端。但是,对于无粘性材料中的流体驱动裂缝,没有滞后带。压应力状态和没有流体滞后是具有低或可忽略的内聚力的颗粒材料中水力压裂的重要特征。目前,可以提供两种与压应力状态和不存在流体滞后相一致的断裂萌生和扩展的运动学机制。第一种机制是基于在开放裂缝尖端之前传播的剪切带。第二个是基于有效应力的减少和裂缝尖端泄漏区域内的材料流态化。我们的实验结果表明,影响峰值(初始)压力和裂缝孔径的主要因素是围压的大小。但是,裂缝的形态(和流体渗漏区)不仅随应力显着变化,而且随流速,流体流变学和渗透率等其他参数也发生显着变化。观察到的裂缝的典型特征是多个分支(即,通常仅在裂缝的一侧可见的小分支)和裂缝尖端的钝度。后者表明无粘性材料在无粘性材料的裂缝扩展过程中的重要性。与固体材料相似,裂缝垂直于最小压缩应力传播。定标表明,在有限泄漏(即泄漏区的厚度远小于裂缝长度)范围内进行的实验中,垂直于裂缝方向的泄漏带中的压力梯度。但是,由于裂缝孔口相对较宽,流体压力不会沿裂缝明显下降。这表明未固结材料中的水力压裂在韧性支配状态下扩散。此外,以韧性为主导的水力压裂理论模型仅需一个拟合参数即可与实验压力-时间依赖性相匹配。规模分析表明,裂缝尖端的大孔径对应于相对较大的``有效''裂缝(表面)能量,可能比硬岩石的典型能量大几个数量级。;我们工作的主要结论是,无粘性材料的裂缝可以被认为是“厚实的”。这意味着裂缝中的压降微不足道。因此,我们测试中的断裂可以认为是韧性占主导。此外,确定峰值喷射压力的主要参数是限制应力的参数。在这项工作中,我们将针对四个主要参数进行全面的实验开发:限制应力,流体流变性,注入速率和渗透率。我们使用尺寸分析和缩放关系,并将我们的实验结果与无粘性饱和材料中水力压裂的韧性控制模型进行比较。最后,我们将开发的模型与现场数据进行比较。

著录项

  • 作者

    Hurt, Robert S.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Civil.;Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 379 p.
  • 总页数 379
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号