首页> 外文学位 >Dynamic Endothelialization of Aortic Heart Valve Scaffolds.
【24h】

Dynamic Endothelialization of Aortic Heart Valve Scaffolds.

机译:主动脉心脏瓣膜支架的动态内皮化。

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular disease is the number one killer worldwide affecting both the heart and blood vessels. Valvular heart disease can arise from calcification, and structural deterioration resulting in a stenotic or regurgitant valve incapable of proper function. With approximately 275,000 valve replacements performed annually worldwide, the need for replacement heart valves is well established. Currently, treatment of valvular heart disease is limited to two options (mechanical and bioprosthetic). Both replacement valves have their own drawbacks, which have driven research in the bioengineering field to focus on the development of a tissue engineered heart valve (TEHV) capable of growth and self-repair.;A major hurdle in the creation of a viable TEHV lies in the need for a confluent surface layer of endothelial cells (EC) prior to implantation. ECs are needed in TEHVs because they provide a natural non-thrombogenic surface, and a permeability barrier between blood and the vessel wall. One major step in the TEHV paradigm lies in the development of a means for delivering cells to a heart valve scaffold with the purpose of achieving this confluent cell layer. As it stands now there is no recognized standard for EC seeding, though researchers have developed a number of different devices and protocols attempting to successfully achieve uniform cellular attachment.;The goal of this Master's thesis research was to design and create a dynamic cell-seeding device capable of seeding cells onto the surface of a decellularized porcine aortic heart valve scaffold. Once developed, the dynamic seeding device was to be used to create a protocol for optimizing cellular attachment and confluence on the heart valve surface. Additionally, following cell seeding, the next step in the TEHV paradigm is mechanical preconditioning prior to functional implantation. Utilizing a pulsatile heart valve bioreactor, seeded scaffolds were subjected to mechanical forces for the purpose of studying cellular retention and the effects of mechanical stimuli on cell morphology. Analysis of cellular attachment, retention, and viability was done through the use of Live/Dead Assay and Scanning Electron Microscopy (SEM). The results of both Live/Dead and SEM showed that the dynamic seeding device is capable of seeding porcine aortic endothelial cells onto the surface of aortic heart valve scaffolds and that the cells could be retained on the surface after undergoing physiologic bioreactor conditioning. The cells were found to respond to the conditioning, changing morphology and aligning in response to these mechanical forces.
机译:心血管疾病是全球影响心脏和血管的头号杀手。瓣膜性心脏病可能由钙化引起,并且结构恶化会导致瓣膜狭窄或返流瓣膜无法正常运行。在全球范围内,每年大约要进行275,000个瓣膜置换,因此非常需要更换心脏瓣膜。目前,瓣膜性心脏病的治疗仅限于两种选择(机械和生物修复)。两种替换瓣膜都有其自身的缺点,这促使生物工程领域的研究集中在能够生长和自我修复的组织工程心脏瓣膜(TEHV)的开发上。创建可行的TEHV的主要障碍在于植入前需要内皮细胞(EC)的融合表面层。 TEHV中需要EC,因为它们提供了天然的非血栓形成表面,以及血液和血管壁之间的渗透屏障。 TEHV范例的一个主要步骤在于开发一种用于将细胞递送至心脏瓣膜支架的装置,其目的是实现这种汇合的细胞层。就目前而言,尚无公认的EC播种标准,尽管研究人员开发了许多不同的设备和协议,试图成功实现均匀的细胞附着。;本硕士论文研究的目标是设计和创建动态的细胞播种能够将细胞接种到脱细胞的猪主动脉心脏瓣膜支架表面的装置。一旦开发完成,动态播种设备将用于创建协议,以优化心脏瓣膜表面上的细胞附着和融合。此外,在植入细胞后,TEHV范例的下一步是在功能植入之前进行机械预处理。利用搏动性心脏瓣膜生物反应器,对接种的支架进行机械作用力,以研究细胞滞留以及机械刺激对细胞形态的影响。通过使用活/死分析和扫描电子显微镜(SEM)进行细胞附着,保留和活力的分析。 Live / Dead和SEM的结果均表明,动态播种设备能够将猪主动脉内皮细胞播种到主动脉瓣膜支架表面,并且经过生理性生物反应器调节后,这些细胞可以保留在表面。发现细胞响应于这些机械力而对条件作出反应,改变形态并排列。

著录项

  • 作者

    Pascal, Richard, III.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2012
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号