首页> 外文学位 >Effects of the Extracellular Osmotic Environment on Chondrocyte and Precursor Cell Physical and Metabolic Properties.
【24h】

Effects of the Extracellular Osmotic Environment on Chondrocyte and Precursor Cell Physical and Metabolic Properties.

机译:细胞外渗透环境对软骨细胞和前体细胞物理和代谢特性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Osteoarthritis (OA) is a degenerative disease that afflicts cartilage of the articulating joints, including the knee joint. Due to the poor inherent healing capacity of this tissue, various strategies for repair have been investigated. These include development of tissue-engineered constructs from differentiated cartilage cells or precursor cells that could be implanted into OA defect sites in the knee. Previous work in our laboratory has explored the application of stimuli inspired by the native joint environment in attempts to increase the biochemical and mechanical properties of engineered constructs to levels that can restore function to the heavily-loaded knee.;The overarching goal of the work detailed in this dissertation was therefore to provide novel insight on the influence of the extracellular osmotic environment on chondrocyte and clinically-relevant cartilage precursor cell physical and metabolic properties over timescales (days, weeks) more relevant to the baseline osmotic environment, as described above. Use of various cell sources and 2D and 3D culture models allowed us to refine measurements of osmolarity-related phenomena, to provide more-sophisticated interpretation of these measurements, and to expand the impact of work previously performed on the extracellular osmotic environment of chondrocytes to clinically-relevant tissue engineering applications.;The major conclusions drawn from this work were multiple and contribute to several research areas, including effects of extracellular osmotic environment on cells in 3D and 2D culture, effects of chondrocyte tissue zone-of-origin on cell phenotype, and use of extracellular osmolarity as a physiologic stimulus for cartilage tissue engineering.;These conclusions were (1) The osmolarity of the 3D culture extracellular environment can have a significant effect on chondrocyte physical properties; (2) The osmolarity and/or ion concentration of the 3D culture extracellular environment can have a significant effect on chondrocyte metabolic properties; (3) These effects can persist over timescales relevant to osteoarthritis disease progression and de novo tissue growth; (4) Choice of osmolyte can affect chondrocyte response to alterations in 3D extracellular osmotic environment; (5) Zonal chondrocytes respond similarly to alterations in extracellular osmotic environment; (6) Tissue zone-of-origin is a greater regulator of cell metabolic activity than is the extracellular osmotic environment; (7) The osmolarity in which cells are expanded prior to transfer into 3D culture can affect expanded cell number in 2D and 3D culture and cell-seeded construct properties in 3D culture; (8) Application of higher-osmolarity (400 mOsM NaCl/KCl) 3D culture media increases the biochemical properties of 3D culture constructs over application of lower-osmolarity (300 mOsM) culture media, potentially recommending its use in tissue engineering protocols; (9) Application of higher-osmolarity (400 mOsM NaCl) media during 2D cell expansion increases the biochemical and mechanical properties of expanded cell-seeded 3D culture constructs over application of lower-osmolarity (300 mOsM) culture media, potentially recommending its use in tissue engineering protocols. (Abstract shortened by UMI.).;In the native articular cartilage tissue, the presence of highly negative-charged proteoglycans in the extracellular matrix gives rise to the extracellular osmotic environment, due to the attraction of positive counter-ions and associated water movement into the tissue. A gradient in proteoglycan content through the depth of the tissue gives rise to increasing extracellular osmotic environment from the articular surface of the tissue to the cartilage-bone interface. It is unclear how the metabolically-active chondrocytes that reside within this gradient regulate its concentration under healthy tissue conditions and under the onset of osteoarthritis, when traumatic loss of tissue proteoglycans leads to decreases in extracellular osmolarity.
机译:骨关节炎(OA)是一种退化性疾病,会折损包括膝关节在内的各关节的软骨。由于该组织固有的愈合能力差,已研究了各种修复策略。这些包括从分化的软骨细胞或前体细胞开发组织工程化的构建体,然后将其植入膝盖的OA缺损部位。我们实验室以前的工作已经探索了受原始关节环境启发的刺激的应用,试图将工程构造的生物化学和机械性能提高到可以使重负荷膝盖恢复功能的水平。因此,本发明的目的是如上所述,在与基线渗透环境更相关的时间范围(天,周)内,提供细胞外渗透环境对软骨细胞和临床相关的软骨前体细胞物理和代谢特性的影响的新颖见解。各种细胞来源以及2D和3D培养模型的使用使我们能够改进与渗透压有关的现象的测量,为这些测量提供更复杂的解释,并将以前对软骨细胞的细胞外渗透环境进行的工作的影响扩展到临床相关的组织工程应用。这项工作得出的主要结论是多种多样的,并有助于几个研究领域,包括细胞外渗透环境对3D和2D培养中细胞的影响,软骨细胞起源区域对细胞表型的影响,得出以下结论:(1)3D培养细胞外环境的渗透压可能对软骨细胞的物理特性产生重大影响; (2)3D培养物细胞外环境的渗透压和/或离子浓度可能对软骨细胞的代谢特性产生重大影响; (3)这些影响会在与骨关节炎疾病进展和新组织生长有关的时间尺度上持续存在; (4)渗透液的选择会影响软骨细胞对3D细胞外渗透环境变化的反应; (5)带状软骨细胞对细胞外渗透环境变化的反应相似; (6)组织起源区比细胞外渗透环境对细胞代谢活性的调节作用更大; (7)在渗透到3D培养物中之前,细胞的渗透压可能会影响2D和3D培养中的扩增细胞数量以及3D培养中的细胞播种构建体特性; (8)高渗透压(400 mOsM NaCl / KCl)3D培养基的应用比低渗透压(300 mOsM)培养基的应用增加了3D培养物的生化特性,可能建议在组织工程规程中使用; (9)在2D细胞扩增过程中使用较高渗透压(400 mOsM NaCl)的培养基,比在较低渗透压(300 mOsM)培养基中的应用会增加扩增的细胞播种3D培养物的生物化学和机械性能,因此可能建议将其用于组织工程方案。 (摘要由UMI缩短。);;在天然的关节软骨组织中,由于正抗衡离子的吸引和相关的水运动进入细胞外基质,因此细胞外基质中高度带负电荷的蛋白聚糖的存在会引起细胞外渗透环境。组织。贯穿组织深度的蛋白聚糖含量的梯度导致从组织的关节表面到软骨-骨界面的细胞外渗透环境的增加。当组织蛋白聚糖的外伤性损失导致细胞外渗透压降低时,尚不清楚在健康组织条件下和骨关节炎发作时,驻留在该梯度内的代谢活性软骨细胞如何调节其浓度。

著录项

  • 作者

    Oswald, Elizabeth S.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Biomedical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号