首页> 外文学位 >Improving electrolytes for lithium-ion and lithium oxygen.
【24h】

Improving electrolytes for lithium-ion and lithium oxygen.

机译:改善锂离子和锂氧的电解质。

获取原文
获取原文并翻译 | 示例

摘要

There is an ever increasing demand for fossil fuels. Lithium ion batteries (LIBs) can effectively reduce the production of greenhouse gases and lessen the need for fossil fuels. LIBs also have great potential in electric vehicle applications as an alternative to petroleum modes of transportation. Understanding the chemical reactions between the electrolyte and electrodes in LIBs is very crucial in developing batteries which can work over a wide temperature range and also give a wide potential window. The Solid Electrolyte Interface (SEI), formed by the reduction of solvent molecules on the surface of electrodes, is an important component of LIBs. The SEI is very essential to the performance of LIBs. One electron reduction pathway products of solvent molecules was investigated using lithium-naphthalenide. Methylene ethylene carbonate, a high temperature additive has been synthesized and its performance has been tested at 60°C.;Lithium-Oxygen batteries have an energy density ten times greater than that of LIBs. However, lithium-oxygen batteries have rechargability problems associated with them. The most common electrolyte used in this type of batteries is LiPF6 in carbonate or ether based solvents. LiPF6 inherently decreases electrolyte stability, since LiPF 6 can undergo thermal dissociation into PF5 and LiF. PF 5 being a strong Lewis acid, can react with electron rich species. The thermal decomposition reactions of LiPF6 based electrolytes are studied in detail with regard to LIBs. The comprehensive study has been conducted on the thermal degradation of several electrolyte systems in the presence of Li2O2.
机译:对化石燃料的需求不断增长。锂离子电池(LIB)可以有效减少温室气体的产生,并减少对化石燃料的需求。 LIB在电动汽车应用中作为石油运输方式的替代品也具有巨大潜力。了解锂离子电池中电解质与电极之间的化学反应对于开发可在较宽温度范围内工作并提供宽电位窗口的电池至关重要。通过减少电极表面上的溶剂分子形成的固体电解质界面(SEI)是LIB的重要组成部分。 SEI对于LIB的性能非常重要。使用萘锂研究了溶剂分子的一种电子还原途径产物。碳酸亚甲基亚乙酯是一种高温添加剂,已经合成,其性能已在60°C下进行了测试。锂氧电池的能量密度是LIB的十倍。然而,锂氧电池具有与其相关的可再充电问题。这种类型的电池中最常用的电解质是在碳酸盐或醚基溶剂中的LiPF6。 LiPF 6固有地降低了电解质的稳定性,因为LiPF 6可能发生热分解成PF5和LiF。 PF 5是一种强路易斯酸,可以与富电子物种发生反应。关于LIB,详细研究了LiPF6基电解质的热分解反应。在存在Li2O2的情况下,已经对几种电解质系统的热降解进行了综合研究。

著录项

  • 作者

    Chalasani, Dinesh.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Chemistry Inorganic.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号