首页> 外文学位 >Adaptive and generalized finite element methods in applied electromagnetic analysis.
【24h】

Adaptive and generalized finite element methods in applied electromagnetic analysis.

机译:应用电磁分析中的自适应和广义有限元方法。

获取原文
获取原文并翻译 | 示例

摘要

Real life electromagnetic modeling problems often combine complex physics, complicated geometry, and high accuracy requirements. Under such conditions many solution methods fail or perform poorly.; The main goal of this work was to develop efficient and reliable practical methodology for solving several classes of 3D engineering electromagnetic problems. This methodology is based on the adaptive Finite Element - multigrid approach and features a unique combination of state-of-the-art techniques, such as multigrid preconditioners, adaptive mesh refinement, local error estimates. The major advantages of the adaptive multigrid method are its high speed and flexibility in handling complex physical and geometric characteristics of the model.; The dissertation presents the mathematical fundamentals of the method and its contributing techniques. The main emphasis, however, is made on the applications. Several engineering problems are chosen to demonstrate how the method is applied and customized to suit a particular situation.; The first example is from the area of geophysical measurements---namely, computation of fields and currents produced by a galvanic measuring device in ground formations. The problem features a large number of unknowns, complex geometry, nonuniform materials, and an unbounded domain. Several test runs confirmed the high efficiency and accuracy of the adaptive multigrid method supplemented with a spatial mapping technique.; The second example is related to micromagnetic simulations. Minimization of the free energy functional is required in order to determine the domain structure of magnetic materials. The adaptive multigrid technique is applied to the computation of the demagnetizing field, which is a crucial part of each minimization step. The method provides a near optimal solution speed without imposing restrictions on the geometry of the problem.; Another solution method considered and implemented in the dissertation was the Generalized Finite Element Method by Partition of Unity (GFEM-PU). This method permits the use of any reasonable approximating functions (not necessarily piecewise polynomial as in the standard FEM) thus providing a high level of flexibility and customization. In the dissertation, the method is applied to the modeling of magnetically driven deposition of nanoparticles. The behavior of the field near the particles is qualitatively known a priori and is incorporated into the set of approximating functions. This approximation leads to accurate numerical results even for coarse meshes that do not resolve the geometry of the particles.
机译:现实生活中的电磁建模问题通常结合了复杂的物理原理,复杂的几何形状和高精度要求。在这种情况下,许多解决方法都会失败或表现不佳。这项工作的主要目的是为解决几类3D工程电磁问题开发有效而可靠的实用方法。这种方法基于自适应有限元-多网格方法,并具有最新技术的独特组合,例如多网格预处理器,自适应网格细化,局部误差估计。自适应多重网格方法的主要优点是它的高速性和灵活性,可以处理模型的复杂物理和几何特征。本文介绍了该方法的数学基础及其贡献技术。但是,主要重点是应用程序。选择了几个工程问题来演示如何应用和定制该方法以适合特定情况。第一个示例来自地球物理测量领域-即计算由电测量设备在地层中产生的场和电流。该问题的特点是未知数众多,几何形状复杂,材料不均匀以及无界域。多次测试证实了采用空间映射技术的自适应多重网格方法的高效性和准确性。第二个示例与微磁模拟有关。为了确定磁性材料的畴结构,需要使自由能官能团最小化。自适应多重网格技术被应用于退磁场的计算,这是每个最小化步骤的关键部分。该方法提供了几乎最佳的解决速度,而没有对问题的几何形状施加限制。本文考虑和实现的另一种求解方法是统一划分广义有限元法(GFEM-PU)。此方法允许使用任何合理的逼近函数(不一定是标准FEM中的分段多项式),因此提供了高度的灵活性和定制性。本文将该方法应用于磁驱动纳米颗粒沉积的建模。定性地先验地知道粒子附近的场的行为,并将其并入一组近似函数中。即使对于不能解决粒子几何形状的粗网格,这种近似也可以得出准确的数值结果。

著录项

  • 作者

    Plaks, Alexander.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号