首页> 外文学位 >Trapped atoms in cavity QED for quantum optics and quantum information.
【24h】

Trapped atoms in cavity QED for quantum optics and quantum information.

机译:QED腔中的被困原子,用于量子光学和量子信息。

获取原文
获取原文并翻译 | 示例

摘要

One of the requirements for the physical implementation of many protocols in quantum information science is the ability to convert quantum information from stationary to travelling form and transmit it over long distances. The strong coupling domain of cavity quantum electrodynamics (QED) provides a near-ideal setting for the pursuit of these goals. In addition, cavity QED is a unique system for the study of open quantum systems and quantum coherence. Cavity QED experiments have entered a new era in recent years, with the advent of single atom intracavity trapping.; Experiments described in this thesis represent significant progress in these areas. Beginning with a tremendous set of improvements to far-off-resonance optical trapping of single Cs atoms in a Fabry-Perot resonator, we have undertaken a series of investigations in which strongly coupled trapped atoms have been used for quantum optics and quantum information. These improvements in trapping go beyond quantitative lengthening of storage times, in that the trap is largely insensitive to the atom's internal state.; As a result of this unique property of the optical trap, a breakthrough was made in the continuous observation time of trapped atoms. Individual atoms can be observed for times of order 1 second, and this scheme enables real-time monitoring and measurement of the number of atoms strongly coupled to the cavity. This enables deterministic preparation of a particular atom number of the experimenter's choice.; Using single trapped atoms in our cavity, we have also experimentally realized the one-atom laser in a regime of strong coupling. The unconventional characteristics of this system are explored in detail, including strongly nonclassical output. This represents a significant milestone of longstanding interest in the quantum optics community, and goes beyond previous work with atomic beams where there was a fluctuating atom number in the cavity.; Finally, we have achieved the first deterministic generation of single photons in a setting suitable for quantum networks. By illuminating a strongly coupled, trapped atom by classical laser pulses, single photons have been generated on demand, with intrinsic efficiency near unity. Although a great deal of work remains to configure this system as a true node in a quantum network, the ground-work has been laid for progress in the near future, where one goal is to create an entangled state of two atoms in distantly separated cavities.
机译:量子信息科学中许多协议的物理实现的要求之一是能够将量子信息从固定形式转换为行进形式并在远距离传输的能力。腔量子电动力学(QED)的强耦合域为追求这些目标提供了近乎理想的设置。此外,腔QED是研究开放量子系统和量子相干性的独特系统。随着单原子腔内俘获的出现,腔QED实验已进入近年来的新时代。本文描述的实验代表了这些领域的重大进展。从对Fabry-Perot谐振器中单个Cs原子的远距共振光学俘获的一系列重大改进开始,我们进行了一系列研究,其中将强耦合俘获的原子用于量子光学和量子信息。陷阱的这些改进超出了存储时间的定量延长,因为陷阱对原子的内部状态不敏感。由于光阱的这种独特性质,在捕获原子的连续观察时间上取得了突破。可以观察到单个原子大约1秒的时间,并且该方案可以实时监视和测量与腔紧密耦合的原子数。这样就可以确定性地准备实验者选择的特定原子数。使用我们腔中的单个俘获原子,我们还通过实验实现了强耦合状态下的单原子激光器。详细探讨了该系统的非常规特性,包括非常非经典的输出。这是长期以来对量子光学界关注的一个重要里程碑,并且超越了以前的原子束工作,在原子束中腔中原子数的波动。最后,我们在适合量子网络的环境中实现了单光子的确定性生成。通过用经典的激光脉冲照射强耦合俘获的原子,按需生成了单光子,其固有效率接近于1。尽管仍然需要进行大量工作才能将该系统配置为量子网络中的真实节点,但已经为不久的将来奠定了基础,其中一个目标是在相距遥远的空腔中创建两个原子的纠缠态。

著录项

  • 作者

    McKeever, Jason.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Optics.; Physics Atomic.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;分子物理学、原子物理学;
  • 关键词

  • 入库时间 2022-08-17 11:43:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号