首页> 外文学位 >Solid Oxide Fuel Cell Interface Dynamics: Performance Degradation and Stabilization Study.
【24h】

Solid Oxide Fuel Cell Interface Dynamics: Performance Degradation and Stabilization Study.

机译:固体氧化物燃料电池界面动力学:性能下降和稳定性研究。

获取原文
获取原文并翻译 | 示例

摘要

Solid oxide fuel cell (SOFC) technology has emerged as a potential alternative energy solution to the energy and environmental problems facing mankind. One key obstacle to widespread adoption of SOFCs as power generation systems is the high fabrication cost associated with their high operational temperatures. Materials with the perovskite crystal structure have been developed as cathode and electrolyte component materials, which allows for reducing the operational temperature without sacrificing the electrochemical performance. However, their long term stability under elevated operational temperatures has not been well understood.;In this study, the stability and degradation mechanisms of perovskite cathode/electrolyte interfaces were systematically investigated by correlating long term electrochemical performance change to the nano-scale structural and chemical evolution, assessed using advanced electron and X-ray characterization techniques. A significant increase in cathode polarization resistance was observed over the duration of testing, and the performance degradation was attributed to the formation of a less catalytic phase and a change in perovskite stoichiometry at the interface. The mechanisms underpinning the structural and chemical evolution revealed characteristics with strong diffusion related kinetics.;Based on the mechanistic understanding of factors that constitute interfacial instability, approaches to stabilize perovskite cathode/electrolyte interfaces were experimentally explored. One potential approach is to reduce cation mobility within cathode materials by using materials with an ordered, double perovskite structure; another approach is to minimize the cation diffusion driving force by tailoring the cation elements and doping levels within potential cathode materials; a third approach is to add a doped ceria diffusion barrier coating between the cathode and electrolyte layers. Exploratory studies with each approach are discussed.
机译:固体氧化物燃料电池(SOFC)技术已经成为解决人类面临的能源和环境问题的潜在替代能源解决方案。 SOFC作为发电系统被广泛采用的一个主要障碍是与高工作温度相关的高制造成本。具有钙钛矿晶体结构的材料已经被开发为阴极和电解质组分材料,其允许在不牺牲电化学性能的情况下降低操作温度。然而,在高温下它们的长期稳定性还没有得到很好的理解。;在这项研究中,通过将长期的电化学性能变化与纳米级结构和化学性质相关联,系统地研究了钙钛矿阴极/电解质界面的稳定性和降解机理。进化,使用先进的电子和X射线表征技术进行评估。在整个测试过程中观察到阴极极化电阻的显着增加,性能下降归因于催化相的减少和界面处钙钛矿化学计量的变化。支撑结构和化学演化的机理揭示了具有强扩散相关动力学的特征。;基于对构成界面不稳定性的因素的机械理解,实验研究了稳定钙钛矿阴极/电解质界面的方法。一种潜在的方法是通过使用具有规则的双钙钛矿结构的材料来降低阴极材料内的阳离子迁移率。另一种方法是通过调整阳离子元素和潜在阴极材料中的掺杂水平来使阳离子扩散驱动力最小化。第三种方法是在阴极和电解质层之间添加掺杂的二氧化铈扩散阻挡涂层。讨论了每种方法的探索性研究。

著录项

  • 作者

    Zhang, Chuan.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Materials science.;Energy.;Engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号