首页> 外文学位 >Numerical study of flexible flapping wings.
【24h】

Numerical study of flexible flapping wings.

机译:柔性襟翼的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we apply a strong-coupling approach to simulate highly flexible flapping wings interacting with surrounding fluid flows for both two-dimensional configurations and three-dimensional configurations. In this approach, the elastic body and its interaction with the fluid are implemented as body/surface force terms. In this way, the fluid and solid can be solved by a combined and modified form of typical Navier-Stokes equations in a global Eulerian framework. To control the flapping motion of the wings, direct-forcing type of Immersed Boundary (IB) method is implemented into the above approach to provide the "skeleton" of the wings. Prescribed flapping motion is defined on the "skeleton" , and the rest of the wing moves passively through elasticity and fluid-structure interaction (FSI).;First, the approach is applied on some benchmark cases for validation purpose. There are four cases: 1) two-dimensional stationary rigid cylinder; 2) three-dimensional stationary rigid sphere; 3) three-dimensional pitching panel; and 4) viscoelastic particle in a free shear layer. The first two cases are classical two-dimensional and three-dimensional benchmarks for incompressible flow passing objects, the third case represents problems with a moving boundary in prescribed motion; and the last case is to test the performance for strong fluid-structure interaction involving a flexible body. For all cases, our new algorithm performs well in a comparison to other literatures.;This new algorithm is then used to study the propulsion characteristics of a flexible two-dimensional NACA0012 airfoil, which is under active plunging defined by control cells and corresponding passive pitching motion. The propulsion of airfoils with different elastic moduli and at different flapping frequencies and amplitudes are studied. With different input parameters, various wake structures can be observed. As a result, the coupled plunging-pitching motion can be either drag-producing or thrust-producing. Finally, passive pitching angle &thetas; and nominal angle of attack α for flexible wings are defined to characterize the flapping motion. It is found that &thetas; needs to be greater than 0.262 and α needs to be greater than 0.295 to generate thrust instead of drag for the flapping motion within current parametric matrix.;The last step towards the study of flapping wings is to extend the code to three-dimensional cases. The algorithm and the corresponding computer code has been first extended to a three-dimensional serial version then to a parallel HPC version for beowulf clusters. With the high-efficiency of the parallel code, we were able to run the following four cases with acceptable computational time. There are three test cases: rectangular plates in heaving motion, a rectangular wing in root-flapping motion, and a triangular wing in root-flapping motion. The last case is a curved wing in root-flapping motion which is studied in more details. The curved wing case uses the wing shape from a toy MAV and matches approximately the motion, angle of attack, and other control parameters with the MAV performing "in live" and in experiments of a collaborative effort. The numerical study focuses on the vortex structures, the force, and the relation to control parameters (e.g. angle of attack).;With the data available from a collaborative experimental work, we are able to further benchmark our simulation algorithm and computer code. At the end of the dissertation, we show the comparison of numerical data with experimental data for two cases: 1) two-dimensional flexible airfoil heaving in a oil tank; 2) three-dimensional curved wing flapping in a wind tunnel. The cases show good match for characteristics both qualitatively and quantitatively.
机译:在这项研究中,我们采用强耦合方法来模拟高度灵活的襟翼与二维结构和三维结构与周围流体流动的相互作用。在这种方法中,弹性体及其与流体的相互作用被实现为体力/表面力项。这样,可以通过整体欧拉框架中典型Navier-Stokes方程的组合和修改形式来求解流体和固体。为了控制机翼的拍打运动,在上述方法中采用了直接强迫型浸入边界(IB)方法,以提供机翼的“骨架”。规定的襟翼运动定义在“骨架”上,其余机翼通过弹性和流固耦合(FSI)被动移动。首先,该方法在一些基准情况下用于验证目的。有四种情况:1)二维固定式刚性圆柱体; 2)三维固定刚性球体; 3)三维投球面板; 4)自由剪切层中的粘弹性颗粒。前两种情况是不可压缩的流动物体的经典二维和三维基准,第三种情况表示在规定运动中运动边界存在问题。最后一种情况是测试涉及柔性主体的强力流体-结构相互作用的性能。在所有情况下,我们的新算法在与其他文献的比较中均表现良好。;然后,该新算法用于研究柔性二维NACA0012翼型的推进特性,该翼型在控制单元和相应的被动俯仰所定义的主动下降下运动。研究了具有不同弹性模量和不同拍打频率和振幅的机翼的推进力。使用不同的输入参数,可以观察到各种唤醒结构。结果,耦合的俯仰运动既可以产生阻力,也可以产生推力。最后,被动俯仰角θ定义了挠性​​机翼的标称攻角α以表征拍打运动。发现&thetas;需要大于0.262且α需要大于0.295才能在当前参数矩阵内生成推力而不是阻力来进行扑动运动。研究扑翼的最后一步是将代码扩展到三维情况。该算法和相应的计算机代码已首先扩展为beowulf群集的三维串行版本,然后扩展为并行HPC版本。借助高效的并行代码,我们能够以可接受的计算时间运行以下四种情况。有三个测试案例:起伏运动的矩形板,拍打根部运动的矩形机翼和拍打根部运动的三角形机翼。最后一种情况是根部拍打运动中的弯曲机翼,对此进行了更详细的研究。弯曲的机翼盒使用玩具MAV的机翼形状,将运动,迎角和其他控制参数与MAV近似匹配,MAV可以“实时”进行实验,也可以进行协作实验。数值研究的重点是涡流结构,力以及与控制参数(例如攻角)的关系。借助合作实验工作获得的数据,我们能够进一步对模拟算法和计算机代码进行基准测试。在论文的最后,我们给出了两种情况下数值数据与实验数据的比较:1)二维油箱中的柔性翼型起伏; 2)风洞中的三维弯曲机翼拍打。这些案例在定性和定量方面都表现出很好的匹配特征。

著录项

  • 作者

    Yang, Tao.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Engineering Aerospace.;Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号