首页> 外文学位 >Modeling of deformations of single-walled carbon nanotubes.
【24h】

Modeling of deformations of single-walled carbon nanotubes.

机译:单壁碳纳米管的变形建模。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a study of single-walled carbon nanotubes (SWNTs) using revised Cosserat rod models. A SWNT is a thin hollow cylinder, with diameter of the order of 1 nm and length possibly as large as 1μm. Its wall is composed of a single layer of carbon atoms with an estimated thickness around 0.335 nm. A single walled CNT (SWNT) is classified as armchair, zig-zag or chiral, depending on the (regular) arrangement of atoms on its surface.;In general, CNT models based on traditional continuum mechanics can be inconsistent or inaccurate [57, 44, 16], while atomistic simulations can be prohibitively expensive. Atomistic-continuum models e.g. the quasi-continuum approach, originally proposed for bulk crystals [47, 51], attempt to combine the accuracy of atomistic simulations with the efficiency of continuum models. This approach has been applied to CNTs [61, 26, 8, 9, 7, 10, 2, 55, 11].;At relatively long length scales, it makes sense to propose a one-dimensional model for a SWNT. For such long nanotubes, one-dimensional models are attractive for both theoretical modeling as well as numerical simulation. Chandraseker et al. [10] proposed a Cosserat rod model [1] for a SWNT that can capture large deformations of SWNTs. This model includes deformation modes such as bending, twisting, extension and shear, as well as coupling between extension and twist and between shear and bending. Kumar and Mukherjee [31] further developed the Cosserat rod model to incorporate cross-sectional deformation and allow coupling between cross-sectional deformation with twist and extension.;In this work, finite element simulations of both standard and revised Cosserat rod models are carried out. Using a standard Cosserat rod model combined with atomistic simulation, the governing equations of a rod model are transformed into weak form and discritized. The weak form of the governing equations contain both geometric and material nonlinearity. A implicit iterative method, based on the Newtown-Raphson method is performed to find the converged solution. Several numerical verification cases are performed to validate the method and demonstrate the capability of this numerical implementation. Finally, in the case of the revised Cosserat rod model, a similar process is carried out to find the finite element solution. In this case, material property is assumed to be linear and only geometric nonlinearity is incorporated.;Finally, a mathematically consistent extension to the revised rod theory is developed that connects an isotropic and hemitropic rod by exploring material symmetry. This proposed approach is applied to model SWNTs with different chiralities. It effectively connects the modeling of different types of SWNTs using five material parameters. The connection between different types of SWNTs is controlled by the chirality angle in the this derivation. Future effort could involve solving the inverse problem to find these material parameters.
机译:本文提出了使用修正的Cosserat杆模型对单壁碳纳米管(SWNT)的研究。 SWNT是一个薄的空心圆柱体,直径约为1 nm,长度可能高达1μm。它的壁由单层碳原子组成,估计厚度约为0.335 nm。单壁碳纳米管(SWNT)根据其表面上原子的(规则)排列而分为扶手椅,之字形或手性。通常,基于传统连续体力学的碳纳米管模型可能不一致或不准确[57, [44] [44,16],而原子模拟可能会非常昂贵。原子连续体模型最初为块状晶体[47,51]提出的准连续谱方法试图将原子模拟的准确性与连续谱模型的效率相结合。该方法已应用于CNT [61、26、8、9、7、10、2、55、11]。在相对较长的长度范围内,为SWNT提出一维模型是有意义的。对于这样的长纳米管,一维模型对于理论建模和数值模拟都很有吸引力。 Chandraseker等。 [10]提出了一种可捕获SWNTs大变形的SWNT的Cosserat杆模型[1]。该模型包括变形模式,例如弯曲,扭曲,延伸和剪切,以及延伸和扭曲之间以及剪切和弯曲之间的耦合。 Kumar和Mukherjee [31]进一步开发了Cosserat杆模型,该模型包含了截面变形并允许扭转和延伸的截面变形之间耦合。在这项工作中,对标准和改进的Cosserat杆模型进行了有限元模拟。 。使用标准的Cosserat杆模型与原子模拟相结合,将杆模型的控制方程转换为弱形式并进行离散化。控制方程的弱形式包含几何和材料非线性。执行基于Newtown-Raphson方法的隐式迭代方法以找到收敛解。执行了几个数值验证案例,以验证该方法并证明此数值实现的能力。最后,在修改的Cosserat杆模型的情况下,执行类似的过程来找到有限元解。在这种情况下,假定材料特性是线性的,并且仅考虑了几何非线性。最后,通过探索材料的对称性,开发了对修正的杆理论的数学上一致的扩展,该修正杆理论将各向同性和半同性的杆连接起来。该提议的方法适用于具有不同手性的SWNT模型。它使用五个材料参数有效地连接了不同类型的单壁碳纳米管的建模。在该推导中,不同类型SWNT之间的连接由手性角控制。未来的工作可能涉及解决反问题以找到这些材料参数。

著录项

  • 作者

    Fang, Chao.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Applied Mechanics.;Engineering Electronics and Electrical.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号