首页> 外文学位 >Ions in water: Free energies, surface effects, and geometrical constraints.
【24h】

Ions in water: Free energies, surface effects, and geometrical constraints.

机译:水中的离子:自由能,表面效应和几何约束。

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present our results for ion solvation in finite and infinite water clusters. Molecular Dynamic simulations are used to connect the fundamental macroscopic quantities such as free energy, internal energy and entropy with the underlying microscopic description. Molecular dynamics studies complement experimental results and lead to a deeper insight into the solvation and diffusion of ionic species. Beyond its intrinsic interest, the ion solvation problem has practical relevance because of its role as ideal model system with which to construct and test ion-water interaction potentials.; The ionic charging free energy is a very sensitive probe for the treatment of electrostatics in any given simulation setting. In this work, we present methods to compute the ionic charging free energy in systems characterized by atomic charges, and higher-order multipoles, mainly dipoles and quadrupoles. The results of these methods under periodic boundary conditions and spherical boundary conditions are then compared. For the treatment of spherical boundary conditions, we introduce a generalization of Gauss' law that links the microscopic variables to the relevant thermodynamic quantities.; Ionic solvation in finite clusters is a problem relevant for many areas of chemistry and biology, such as the gas-liquid interface of tropospheric aerosol particles, or the interphase between water and proteins, membranes, etc. Careful evaluations of the free energy, internal energy and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following: (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodine-like ion in a polarizable water cluster, but not in a non-polarizable water cluster.
机译:在这项工作中,我们介绍了有限和无限水团簇中离子化的结果。分子动力学模拟用于将基本的宏观量(例如自由能,内能和熵)与潜在的微观描述联系起来。分子动力学研究补充了实验结果,使人们对离子物质的溶剂化和扩散有了更深入的了解。除了其内在的兴趣之外,离子溶剂化问题还具有实际意义,因为它作为构建和测试离子水相互作用势的理想模型系统的作用。离子带电自由能是在任何给定的模拟设置下用于处理静电的非常灵敏的探针。在这项工作中,我们提出了在以原子电荷和高阶多极子(主要是偶极子和四极子)为特征的系统中计算离子电荷自由能的方法。然后比较了这些方法在周期性边界条件和球形边界条件下的结果。对于球形边界条件的处理,我们引入了高斯定律的推广,该定律将微观变量与相关的热力学量联系起来。有限簇中的离子溶剂化是与化学和生物学许多领域相关的问题,例如对流层气溶胶颗粒的气液界面,或水与蛋白质,膜之间的界面等。仔细评估自由能,内能熵和熵用于解决有争议的或未解决的问题,这些问题与表面溶剂化的潜在物理原因以及随之而来的基本假设有关。我们的主要结论如下:(i)水簇中单个离子发生表面溶剂化的主要原因是水和离子极化,这与离子的电荷和大小有关。有趣的是,离子的总能量在簇表面附近增加,而水的总能量减少。同样,我们的分析清楚地表明,表面溶剂化的原因不是总水偶极子的大小(除非它太小)。 (ii)熵的贡献与能量的贡献在数量级上相同,因此定量结果不可忽略。 (iii)单纯的能量分析可以对室温下的离子位置进行定性描述。 (iv)我们在极化的水簇中观察到了大的正碘样离子的表面溶剂化,但在非极化的水簇中没有观察到。

著录项

  • 作者

    Herce, Henry David.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Physics Molecular.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号