首页> 外文学位 >Biomorphic Graphite/Copper Composites: Processing, Structure, and Properties.
【24h】

Biomorphic Graphite/Copper Composites: Processing, Structure, and Properties.

机译:生物形态石墨/铜复合材料:加工,结构和性能。

获取原文
获取原文并翻译 | 示例

摘要

Wood-derived ceramics and composites have garnered recent attention due to tailorable thermal and mechanical properties which arise from their unique, naturally-derived microstructure. Wood, possessing a biologic, anisotropic, open-porous microstructure, may be pyrolyzed to yield a porous carbon scaffold with a structure replicating that of the original wood. The wide variety of wood species available allows for microstructure customization based upon precursor selection.;The focus of this thesis is graphite/copper composites, which combine high thermal conductivity, mechanical robustness, and tailorable thermal expansion properties, making them attractive for use in thermal management applications. Factors such as pore volume, pore distribution, and composite structure strongly affect both thermal and mechanical properties. The production of wood-derived porous graphite and graphite/copper composites was explored and the thermal conductivity of resulting materials characterized.;The principle challenge encountered was that wood, like other cellulosic materials, yields an amorphous carbon upon pyrolysis that transforms to a non-ideal turbostratic carbon upon further heat treatment. A catalytic pyrolysis process was developed to promote carbon graphitization at temperatures as low as 1000°C while retaining the wood-derived scaffold microstructure for the addition of a copper second phase.;The wettability of copper on a carbon surface is notoriously poor. Copper alloys with high carbon wettability have poor thermal conductivity relative to pure copper and may react with the graphite scaffold to form a carbide phase, potentially further degrading the thermal properties of the composite. To introduce the copper second phase, an electrodeposition process was developed to deposit copper into the very high aspect ratio porosity of the wood-derived scaffold.;Porous carbon scaffolds and resulting graphite/copper composites were evaluated using thermal and microstructural characterization techniques. Finally, the impact of porosity on thermal conductivity was studied using finite element methods. Using original sample micrographs, the complex, natural porosity of wood was modeled to determine the true thermal conductivity of the solid phase. The thermal conductivity of composite structures was also predicted based on microstructural modeling and results were compared favorably to experimentally-determined values.
机译:木材衍生的陶瓷和复合材料由于其独特的,自然衍生的微观结构而具有可定制的热和机械性能,因而引起了近期的关注。具有生物的,各向异性的,开孔微结构的木材可以被热解以产生具有与原始木材相同的结构的多孔碳支架。可用的木材种类繁多,可根据前体的选择进行微结构定制。;本论文的重点是石墨/铜复合材料,该材料具有高导热性,机械坚固性和可定制的热膨胀特性,使其在热加工中具有吸引力。管理应用程序。孔体积,孔分布和复合结构等因素会强烈影响热性能和机械性能。探索了木材衍生的多孔石墨和石墨/铜复合材料的生产,并表征了所得材料的热导率。遇到的主要挑战是,木材与其他纤维素材料一样,在热解过程中会产生无定形碳,然后转化为非碳。经过进一步热处理后,理想的涡轮层碳。开发了一种催化热解工艺,以在低至1000°C的温度下促进碳石墨化,同时保留了木材衍生的支架微观结构以添加铜第二相。;众所周知,铜在碳表面的润湿性很差。具有高碳润湿性的铜合金相对于纯铜具有较差的导热性,并且可能与石墨支架反应形成碳化物相,从而可能进一步降低复合材料的热性能。为了引入铜第二相,开发了一种电沉积工艺,以将铜沉积到木材衍生的支架的很高的长径比孔隙率中。多孔碳支架以及所得的石墨/铜复合材料使用热和微结构表征技术进行了评估。最后,采用有限元方法研究了孔隙度对导热系数的影响。使用原始的样品显微照片,对木材的复杂自然孔隙率进行了建模,以确定固相的真实导热率。还基于微观结构模型预测了复合结构的热导率,并将结果与​​实验确定的值进行了比较。

著录项

  • 作者

    Johnson, Matthew T.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号