首页> 外文学位 >How to Assemble a Functional Mitotic Checkpoint Complex.
【24h】

How to Assemble a Functional Mitotic Checkpoint Complex.

机译:如何组装功能性有丝分裂检查点复合体。

获取原文
获取原文并翻译 | 示例

摘要

The spindle assembly checkpoint (SAC) is an evolutionarily conserved mechanism that preserves genomic integrity through regulating proper timing of the metaphase-to-anaphase transition during mitosis. In response to SAC activation, a "wait anaphase" signal is generated to halt mitotic progression by promoting formation of the SAC effector. The SAC effector functions to inhibit the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase whose activity is critical for the metaphase-to-anaphase transition and mitotic exit. Closed MAD2 (C-MAD2), one of the two native conformations adopted by the checkpoint protein MAD2, is a well-recognized component of the "wait anaphase" signal generated following SAC activation. However, it has been controversial whether MAD2 is an integral component of the mitotic checkpoint complex (MCC), the suggested SAC effector that potently inhibits the APC/C. We show here that MCC assembly is not only subject to cell cycle regulation, but is driven by intracellular levels of C-MAD2. We have also provided strong evidence demonstrating that C-MAD2 (but not the inactive O-MAD2) is indeed incorporated into the MCC. The selective incorporation of C-MAD2 into the MCC during mitosis arises not only from the previously characterized CDC20:C-MAD2 interaction, but also from a novel direct interaction between C-MAD2 and BUBR1 that was first reported by us. The C-MAD2:BUBR1 interaction has been observed both in vitro and in vivo, and is fundamental for the inhibitory activity of the MCC. We also examined the requirement of several mitotic kinases for MCC assembly, including the core SAC component MPS1 kinase. Through the use of small molecule inhibitors or siRNA-mediated knockdown, we found that the kinase activity of MPS1 is required for MCC assembly and subsequent APC/C inhibition. In contrast, MPS1 appears to have no role in maintaining the stability of pre-assembled MCC. Inhibition of MPS1 kinase by the small molecule reversine prevents MAD2 incorporation into the MCC, simultaneously impairing both CDC20:MAD2 and BUBR1:MAD2 interactions but having no apparent effect on the BUBR1:CDC20 interaction. Strikingly, the impairment caused by MPS1 inhibition can be rescued by expressing a C-conformation locked MAD2 mutant in mitotic cells. In the presence of reversine, C-MAD2 incorporation into the MCC strongly correlates with MCC:APC/C binding, APC/C inhibition and SAC function. This work has expanded our understanding of SAC signal transducer formation, and has established a direct connection between the SAC signal transducer and SAC effector during checkpoint activation.
机译:纺锤体装配检查点(SAC)是一种进化保守的机制,可通过调节有丝分裂期间中期到后期过渡的适当时机来保持基因组完整性。响应于SAC激活,产生“等待后期”信号以通过促进SAC效应子的形成来阻止有丝分裂进程。 SAC效应子的作用是抑制后期促进复合物/环体(APC / C),这是一种E3泛素连接酶,其活性对于中期到后期的过渡和有丝分裂的退出至关重要。封闭的MAD2(C-MAD2)是检查点蛋白MAD2所采用的两个天然构象之一,是SAC激活后生成的“等待后期”信号的公认组成部分。但是,MAD2是否为有丝分裂检查点复合物(MCC)的组成部分一直存在争议,MCC是有效抑制APC / C的拟议SAC效应子。我们在这里显示,MCC组装不仅受细胞周期调控,而且受细胞内C-MAD2水平的驱动。我们还提供了有力的证据,证明C-MAD2(而非无效的O-MAD2)确实已合并到MCC中。在有丝分裂过程中将C-MAD2选择性掺入MCC不仅源于先前表征的CDC20:C-MAD2相互作用,还源于我们首次报道的C-MAD2与BUBR1之间的新型直接相互作用。 C-MAD2:BUBR1相互作用已在体外和体内观察到,并且是MCC抑制活性的基础。我们还检查了MCC组装所需的几种有丝分裂激酶,包括核心SAC成分MPS1激酶。通过使用小分子抑制剂或siRNA介导的敲低,我们发现MPS1的激酶活性是MCC组装和随后的APC / C抑制所必需的。相反,MPS1在维持预装配的MCC的稳定性方面似乎没有作用。小分子可逆抑制MPS1激酶可防止MAD2掺入MCC,同时损害CDC20:MAD2和BUBR1:MAD2相互作用,但对BUBR1:CDC20相互作用没有明显影响。令人惊讶的是,由MPS1抑制引起的损伤可以通过在有丝分裂细胞中表达C构型锁定的MAD2突变体来挽救。在存在可逆性的情况下,将C-MAD2掺入MCC与MCC:APC / C结合,APC / C抑制和SAC功能密切相关。这项工作扩大了我们对SAC信号换能器形成的理解,并在检查点激活期间在SAC信号换能器和SAC效应器之间建立了直接连接。

著录项

  • 作者

    Tipton, Aaron R.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号