首页> 外文学位 >Soil carbon determination using rapid, inexpensive, non-destructive spectroscopic techniques.
【24h】

Soil carbon determination using rapid, inexpensive, non-destructive spectroscopic techniques.

机译:使用快速,廉价,无损光谱技术确定土壤碳。

获取原文
获取原文并翻译 | 示例

摘要

New methods are required to rapidly and accurately measure soil C at field- and landscape-scales to improve local, regional, and global soil C stock and flux estimates. This research evaluated visible-near infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) for non-destructive in situ soil carbon determination. 'On-the-go' VisNIR has been proposed as a rapid and inexpensive tool for intensively mapping soil clay and organic carbon concentration. In a direct comparison, lab-based spectral data consistently provided greater prediction accuracy than on-the-go spectral data for Montana cropland soils. The current configuration of on-the-go VisNIR systems allows for rapid field scanning, however on-the-go soil processing could improve predictions. LIBS is an emerging elemental analysis technology with the potential to provide rapid, accurate, and precise analysis of soil constituents. We evaluated LIBS for measuring soil profile C in field-moist, intact soil cores. Results indicate that LIBS can be calibrated to accurately estimate and differentiate between soil total and inorganic C concentrations utilizing stoichiometric relationships between C and elements related to total and inorganic C in the soil matrix. The fundamental principles on which VisNIR and LIBS are based differ in regards to molecular and elemental spectroscopy, respectively, therefore integrating VisNIR and LIBS should theoretically improve soil C predictions compared to individual sensors. Integrating VisNIR and LIBS did not consistently improve soil profile C predictions over individual sensors. In general, SOC was not well characterized using VisNIR, LIBS, or combined VisNIR-LIBS for soils in this study, presumably due to challenges associated with scanning surfaces of intact soil cores, variable SOC chemistry, and lack of SOC variation. Considering the challenging conditions under which VisNIR and LIBS were tested, model calibrations and sensor integration performed admirably. Further testing of combined VisNIR-LIBS under more controlled soil conditions with samples containing greater SOC diversity is necessary to determine the technical potential of the method. Currently, results suggest that in situ VisNIR and LIBS may be best employed as field-stratification tools for targeted conventional soil C measurements. Ultimately, we envision a penetrometer-mounted, integrated VisNIR-LIBS sensor array for rapid soil elemental and molecular characterization at field- and landscape-scales.
机译:需要新的方法来快速,准确地测量田间和景观尺度的土壤碳,以改善局部,区域和全球的土壤碳储量和通量估算值。这项研究评估了可见-近红外漫反射光谱(VisNIR)和激光诱导击穿光谱(LIBS)用于非破坏性原位土壤碳的测定。有人提出“移动” VisNIR是一种快速而廉价的工具,用于密集绘制土壤黏土和有机碳浓度。在直接比较中,基于实验室的光谱数据始终提供比蒙大拿州农田土壤的移动光谱数据更高的预测准确性。实时VisNIR系统的当前配置可实现快速野外扫描,但是实时土壤处理可以改善预测。 LIBS是一种新兴的元素分析技术,具有提供对土壤成分进行快速,准确和精确分析的潜力。我们评估了LIBS在野外潮湿,完整土壤芯中测量土壤剖面C的能力。结果表明,LIBS可以进行校准,以利用碳与土壤基质中与总碳和无机碳有关的元素之间的化学计量关系,准确估算和区分土壤总碳和无机碳的浓度。 VisNIR和LIBS所基于的基本原理分别在分子光谱和元素光谱学上有所不同,因此与单独的传感器相比,VisNIR和LIBS的集成理论上可以改善土壤碳的预测。与单个传感器相比,VisNIR和LIBS的集成并不能持续改善土壤剖面C的预测。通常,在这项研究中,使用VisNIR,LIBS或组合的VisNIR-LIBS不能很好地对土壤进行SOC表征,这可能是由于完整土壤芯的扫描表面,变化的SOC化学以及缺乏SOC变化带来的挑战。考虑到测试VisNIR和LIBS的挑战性条件,模型校准和传感器集成表现出色。为了确定该方法的技术潜力,有必要在更可控的土壤条件下用含更大SOC多样性的样品进一步测试组合的VisNIR-LIBS。目前,结果表明原位VisNIR和LIBS可以最好地用作目标常规土壤C测量的田间分层工具。最终,我们构想了一个安装在渗透仪上的集成式VisNIR-LIBS传感器阵列,可以在田野和景观范围内对土壤的元素和分子进行快速表征。

著录项

  • 作者

    Bricklemyer, Ross Stanley.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号