首页> 外文学位 >Theory and simulation of biomolecular systems: Protein-mediated membrane remodeling.
【24h】

Theory and simulation of biomolecular systems: Protein-mediated membrane remodeling.

机译:生物分子系统的理论和模拟:蛋白质介导的膜重塑。

获取原文
获取原文并翻译 | 示例

摘要

Plasma membrane geometry is very important in many biological processes, such as clathrin mediated endocytosis (CME). Bin/Amphiphysin/Rvs (BAR) domain containing proteins are extensively found in CME processes where they sense and remodel membrane curvatures. In vivo, BAR domains can initiate the process as well as recruit key proteins in the scission and uncoating stages. In vitro, BAR domains selectively bind to membranes with different curvatures. In various concentrations, BAR domains also tubulate and vesiculate membranes.;The underlying mechanism in BAR domain mediated membrane remodeling is not well understood. Experiments suffer from resolution restrictions when probing nanoscale properties. In this thesis, multiscale modeling and molecular dynamics simulations were employed to study these in-depth biophysical questions. Large-scale atomistic simulations investigated multiple endophilin N-BAR protein configurations and predict the most probable membrane bound protein structure. To study the membrane sensing mechanism, the folding free energy profiles of the amphipathic H0 helix of the N-BAR domain were obtained, where the curvature of membrane promotes the peptide folding by several kcal/mol. Together with quantitative analysis on the hydrophobic defects on membrane, a cooperative mechanism of amphipathic helix folding and hydrophobic defect promotion was proposed.;The geometry of the plasma membrane is very important in many biological processes, such as clathrin mediated endocytosis (CME). Bin/Amphiphysin/Rvs (BAR) domain containing proteins are extensively found in CME processes where they sense and remodel membrane curvatures. In vivo, BAR domains can initiate the process as well as recruit key proteins in the scission and uncoating stages. In vitro, BAR domains selectively bind to membranes with different curvatures. In various concentrations, BAR domains also promote membrane tubulation and vesiculation.;The underlying mechanism in BAR domain mediated membrane remodeling is not well understood. Experiments suffer from resolution restrictions when probing nanoscale properties. In this thesis, multiscale modeling and molecular dynamics simulations were employed to study these in-depth biophysical questions. Large-scale atomistic simulations investigated multiple endophilin N-BAR protein configurations and predict the most probable membrane bound protein structure. To study the membrane sensing mechanism, the folding free energy profiles of the amphipathic H0 helix of the N-BAR domain were obtained, where the curvature of membrane promotes the peptide folding by several kcal/mol. Together with quantitative analysis on the hydrophobic defects on membrane, a cooperative mechanism of amphipathic helix folding and hydrophobic defect promotion was proposed.;Coarse-grained models were developed systematically based on atomistic results. These coarse-grained simulations studied N-BAR oligomer structure on coated tubules, as well as formation of protein arrays on membrane liposomes. These results shed light on the larger picture of the membrane remodeling process and provide valuable insights into the structure determination in electron microscopy experiments. Furthermore, a coarse-graining method was developed to reproduce the atomistic potential field near the protein. Promising results on several systems show that the method is especially useful in modeling macromolecules. The method also provides a roadmap of a potential fitting approach for obtaining coarse-grained parameters and can be applied to many situations.
机译:在许多生物过程中,例如网格蛋白介导的内吞作用(CME),质膜的几何形状非常重要。含有Bin / Amphphiphysin / Rvs(BAR)结构域的蛋白质广泛存在于CME过程中,在该过程中它们会感知并重塑膜曲率。在体内,BAR域可以在分裂和脱膜阶段启动该过程并募集关键蛋白质。在体外,BAR域选择性结合不同曲率的膜。在各种浓度下,BAR结构域也会使膜管和囊泡形成膜。; BAR结构域介导的膜重塑的基本机制尚不清楚。探索纳米级特性时,实验受到分辨率的限制。本文通过多尺度建模和分子动力学模拟研究了这些深入的生物物理问题。大规模的原子模拟研究了多种内啡肽N-BAR蛋白构型,并预测了最可能的膜结合蛋白结构。为了研究膜的感应机制,获得了N-BAR结构域的两亲性H0螺旋的折叠自由能谱,其中膜的曲率促进了肽折叠数kcal / mol。结合对膜上疏水性缺陷的定量分析,提出了两亲性螺旋折叠和疏水性缺陷促进的协同机制。;质膜的几何结构在网格蛋白介导的内吞作用(CME)等许多生物学过程中非常重要。含有Bin / Amphphiphysin / Rvs(BAR)结构域的蛋白质广泛存在于CME过程中,在该过程中它们会感知并重塑膜曲率。在体内,BAR域可以在分裂和脱膜阶段启动该过程并募集关键蛋白质。在体外,BAR域选择性结合不同曲率的膜。在各种浓度下,BAR结构域还促进膜的成管和囊泡形成。;在BAR结构域介导的膜重塑中的潜在机制尚不清楚。探索纳米级特性时,实验受到分辨率的限制。本文通过多尺度建模和分子动力学模拟研究了这些深入的生物物理问题。大规模的原子模拟研究了多种内啡肽N-BAR蛋白构型,并预测了最可能的膜结合蛋白结构。为了研究膜的感应机制,获得了N-BAR结构域的两亲性H0螺旋的折叠自由能谱,其中膜的曲率促进了肽折叠数kcal / mol。结合对膜上疏水性缺陷的定量分析,提出了两亲性螺旋折叠和疏水性缺陷促进的协同机制。;基于原子性结果系统地建立了粗粒度模型。这些粗粒度模拟研究了包被的小管上的N-BAR低聚物结构,以及膜脂质体上蛋白质阵列的形成。这些结果揭示了更大的膜重塑过程,并为电子显微镜实验中的结构测定提供了有价值的见解。此外,开发了一种粗粒度方法来重现蛋白质附近的原子势场。在几个系统上的有希望的结果表明,该方法在大分子建模中特别有用。该方法还提供了用于获得粗粒度参数的潜在拟合方法的路线图,并且可以应用于许多情况。

著录项

  • 作者

    Cui, Haosheng.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号