首页> 外文学位 >Shape modeling and analysis with entropy-based particle systems.
【24h】

Shape modeling and analysis with entropy-based particle systems.

机译:使用基于熵的粒子系统进行形状建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

Many important fields of basic research in medicine and biology routinely employ tools for the statistical analysis of collections of similar shapes. Biologists, for example, have long relied on homologous, anatomical landmarks as shape models to characterize the growth and development of species. Increasingly, however, researchers are exploring the use of more detailed models that are derived computationally from three-dimensional images and surface descriptions. While computationally-derived models of shape are promising new tools for biomedical research, they also present some significant engineering challenges, which existing modeling methods have only begun to address.;The specific research contributions of this dissertation are as follows. First, I describe a mathematical framework and a robust numerical algorithm for computing optimized correspondence-point shape models using an entropy-based optimization and particle-system technology. Second, I develop a series of extensions of the framework to more general classes of shape analysis problems, including the analysis of multiple-object complexes, the generalization to correspondence based on generic functions of position, an extension to handle surfaces with open boundaries, and shape modeling with simple regression. Third, I describe the application of statistical hypothesis testing, regression analysis, and multiple-analysis of covariance to the proposed shape models. I also introduce new techniques for visualization and interpretation of these statistics. Finally, in cooperation with biomedical researchers, I present validation of the above research contributions by their successful application to real-world research problems.;In this dissertation, I propose a new computational framework for statistical shape modeling that significantly advances the state-of-the-art by overcoming many of the limitations of existing methods. The framework uses a particle-system representation of shape, with a fast correspondence-point optimization based on information content. The optimization balances the simplicity of the model (compactness) with the accuracy of the shape representations by using two commensurate entropy metrics and no free parameters. The idea is to maximize both the geometric accuracy and the statistical simplicity of the shape model, in accordance with the principle of parsimony in model selection. The nonparametric representation allows the method to be applied to a larger class of problems than existing methods, including nonspherical surfaces, open surfaces, and sets of multiple surfaces. The relative simplicity of the surface representation and the low number of free parameters results in a framework that is easy to use and can operate directly on image segmentations. In collaboration with scientists from several important areas of biomedicine. I have demonstrated that the proposed method is indeed an effective tool for scientific research.
机译:医学和生物学基础研究的许多重要领域通常都采用工具对相似形状的集合进行统计分析。例如,生物学家长期以来一直将同源的解剖学界标作为形状模型来表征物种的生长和发育。然而,越来越多的研究人员正在探索使用更详细的模型,这些模型是从三维图像和表面描述计算得出的。尽管形状的计算模型是有前途的生物医学研究工具,但它们也提出了一些重大的工程挑战,现有的建模方法才刚刚开始解决这些问题。本论文的具体研究贡献如下。首先,我描述了一种数学框架和鲁棒的数值算法,用于使用基于熵的优化和粒子系统技术来计算优化的对应点形状模型。其次,我开发了一系列框架扩展,以解决更通用的形状分析问题,包括多对象复合物的分析,基于位置的通用函数的对应关系的通用化,处理具有开放边界的曲面的扩展以及具有简单回归的形状建模。第三,我描述了统计假设检验,回归分析和协方差多重分析在所提出的形状模型中的应用。我还将介绍用于可视化和解释这些统计信息的新技术。最后,我与生物医学研究人员合作,通过对上述研究成果的成功应用,验证了它们的成功应用;在本论文中,我提出了一种用于统计形状建模的新计算框架,该框架显着地改善了研究现状。通过克服现有方法的许多局限性来实现最先进的技术。该框架使用形状的粒子系统表示形式,并基于信息内容进行快速对应点优化。该优化通过使用两个相称的熵度量并且没有自由参数来平衡模型的简单性(紧凑性)和形状表示的准确性。根据模型选择中的简约原则,该想法是使形状模型的几何精度和统计简化最大化。与现有方法相比,非参数表示法允许该方法应用于更大范围的问题,包括非球面,开放表面和多组表面。表面表示的相对简单性和较少的自由参数导致了一个易于使用且可以直接在图像分割上运行的框架。与来自生物医学几个重要领域的科学家合作。我已经证明了所提出的方法确实是科学研究的有效工具。

著录项

  • 作者

    Cates, Joshua.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Biology Biostatistics.;Computer Science.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号