首页> 外文学位 >Fast sweeping methods for static Hamilton -Jacobi equations.
【24h】

Fast sweeping methods for static Hamilton -Jacobi equations.

机译:静态Hamilton -Jacobi方程的快速扫描方法。

获取原文
获取原文并翻译 | 示例

摘要

Hamilton-Jacobi equations arise in many applications such as geometrical optics, crystal growth, path planning, and seismology. Viscosity solutions of these nonlinear differential equations usually develop singularities in their derivatives. In this thesis, we will present several fast sweeping methods which are based on the Godunov Hamiltonian or the Lax-Friedrichs Hamiltonian to approximate the viscosity solution of convex or arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. We solve for the value of a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. For the sweeping methods based on Lax-Friedrichs Hamiltonian, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approaches. Higher order schemes are also briefly discussed. At the end, we implement Lax-Friedrichs sweeping method for optimal control problems in continuous and hybrid dynamics.
机译:汉密尔顿-雅各比方程出现在许多应用中,例如几何光学,晶体生长,路径规划和地震学。这些非线性微分方程的粘度解通常会在其导数中产生奇点。在本文中,我们将介绍几种基于Godunov哈密顿量或Lax-Friedrichs哈密顿量的快速清扫方法,以近似于任意数量的空间维上的凸或任意静态Hamilton-Jacobi方程的粘度解。我们根据特定网格点的相邻点来求解其值,从而可以利用高斯-塞德尔式非线性迭代方法。此外,通过遵循一组有限的特征,将基于组的因果关系原理合并到高斯-塞德尔迭代中,我们拥有一种易于实现的,广泛适用的,快速收敛的数值方法。对于基于Lax-Friedrichs哈密顿量的清扫方法,与其他基于Godunov数值哈密顿量的方法不同,在实现中需要一些计算边界条件。我们给出一个简单的配方,该配方强制执行离散最小-最大原理的版本。对一维电子方程进行了一些收敛性分析。大量的2D和3D数值示例说明了新方法的效率和准确性。还简要讨论了高阶方案。最后,针对连续和混合动力系统中的最优控制问题,我们实现了Lax-Friedrichs扫描方法。

著录项

  • 作者

    Kao, Chiu-Yen.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号