首页> 外文学位 >Gas kinetic theory and molecular dynamics simulation of nanomaterial transport in dilute gases.
【24h】

Gas kinetic theory and molecular dynamics simulation of nanomaterial transport in dilute gases.

机译:稀薄气体中纳米材料传输的气体动力学理论和分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Drag force, diffusion coefficient, and electric mobility are equivalent attributes of particle transport. These properties are essential to the characterization of particle dynamics in a gas and particle size. Classical transport theories for micrometer sized particles are shown to be invalid in the nanoscale because of strong interactions resulting from the van der Waals or other potential forces between the fluid molecules and particle. In this work, the drag force, diffusion coefficient, and electric mobility of nanoparticles are investigated in the free molecule regime on the basis of gas kinetic theory. A set of analytical formulas for the transport of small, spherical particles are developed and their accuracy is compared with existing experimental data.; The gas kinetic theory analysis reveals that the collision between a gas molecule and a particle undergoes a transition from specular to diffuse scattering as the particle size increases from molecular to micron scales. To qualitatively explain the origin of this transition, molecular dynamics (MD) simulations are employed to give a molecular view of how a gas molecule collides with a nanoparticle. The MD simulations verify the existence of the transition and it is shown that the diffuse scattering is the consequence of molecular absorption on the particle surface.; The transport theory of nanoparticles is generalized to the entire Knudsen number regime through a semiempirical approach. It is shown that the generalized theory is valid for spherical particles of arbitrary sizes.; Thermophoresis of nanoparticles is of great interest in many applications. Analytical solutions of thermophoretic force and velocity of nanoparticles in the free molecule regime are derived. The classical Waldmann solution of thermophoresis is shown as a special case of the current theory.; The transport theory of nanoparticles is extended to nanotubes. The drag force formulation for nanotubes in dilute gases is developed. The formulation may be used to predict the drag force for a nanotube moving in a gas with arbitrary orientation if the potential interaction between the gas molecules and tube is known.; Finally, the drag force of aggregates in the free molecule regime is investigated through a combination of Monte Carlo and MD simulations.
机译:阻力,扩散系数和电迁移率是粒子传输的等效属性。这些特性对于表征气体中的粒子动力学和粒径至关重要。由于在流体分子和颗粒之间的范德华力或其他潜在力引起的强相互作用,微米级颗粒的经典传输理论在纳米尺度上被证明是无效的。在这项工作中,基于气体动力学理论,在自由分子状态下研究了纳米颗粒的阻力,扩散系数和电迁移率。开发了一套用于运输球形小颗粒的分析公式,并将其准确性与现有的实验数据进行了比较。气体动力学理论分析表明,随着分子尺寸从分子级增加到微米级,气体分子与粒子之间的碰撞经历了从镜面散射到扩散散射的转变。为了定性地解释这种转变的起源,采用了分子动力学(MD)模拟来给出气体分子如何与纳米粒子碰撞的分子视图。 MD模拟验证了过渡的存在,并且表明扩散散射是颗粒表面上分子吸收的结果。纳米粒子的传输理论通过半经验方法推广到整个克努森数域。结果表明,广义理论对任意大小的球形颗粒都是有效的。纳米粒子的热泳在许多应用中引起极大兴趣。推导了在自由分子状态下纳米粒子的热泳力和速度的解析解。经典的热泳Waldmann解决方案是当前理论的特例。纳米粒子的传输理论扩展到纳米管。开发了稀薄气体中纳米管的阻力公式。如果已知气体分子和管之间的潜在相互作用,则该公式可用于预测在气体中以任意方向移动的纳米管的阻力。最后,结合蒙特卡罗和MD模拟研究了自由分子体系中聚集体的阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号