首页> 外文学位 >Spatiotemporal Control of Pyramidal Neuron Diversity in Cerebral Cortex Development: Intrinsic specification within progenitors and influence of POU-III transcription factors on progeny neuron characteristics.
【24h】

Spatiotemporal Control of Pyramidal Neuron Diversity in Cerebral Cortex Development: Intrinsic specification within progenitors and influence of POU-III transcription factors on progeny neuron characteristics.

机译:大脑皮层发育中锥体神经元多样性的时空控制:祖细胞的内在规范以及POU-III转录因子对子代神经元特征的影响。

获取原文
获取原文并翻译 | 示例

摘要

The upper layers (II-IV) are the most prominent distinguishing feature of mammalian neocortex compared with avian or reptilian dorsal cortex, and are vastly expanded in primates. Although the time-dependent generation of upper-layer neurons is genetically instructed in their parental progenitor cells, mechanisms governing cell-intrinsic fate transitions remain obscure. Recent reports have demonstrated that the cortical ventricular zone (VZ), which predominantly houses neural progenitor cells, is composed of heterogeneous parental cells that give rise to distinct classes of progeny neurons and glia. We conducted in vivo manipulations to the Notch and Neurogenin pathways in the developing mouse neocortex that force differentiation of progenitors into neurons. By examining resulting cell identities, we show that the beginning of heterogeneity among VZ precursors coincides in space and time with the appearance of the first differentiating cells committed to a neural fate. This onset of neurogenesis occurs first in the lateral neocortex at E11.5 in the mouse, and spreads medially. Shortly thereafter, upper-layer neuronal classes are specified in an iterative and progressive differentiation process among progenitors. Despite the forced exit from VZ at any time or location, electroporated cells undergo a prespecified program to achieve matched laminar positions and molecular identities. Thus, Notch, Neurogenin and Tbr2 govern differentiation to appropriate neural fates regardless of time of exit, whereas "self-renewal" in the VZ is intimately tied to progressive restriction toward later-born cell fates. Furthermore, by examining regional differences in the onset and progression of neurogenesis, we propose that a combinatorial scheme of time- and location-dependent factors regulates distinct neural outcomes.;Interestingly, the induction of POU-homeodomain transcription factors Pou3f3/Brn1 and Pou3f2/Brn2 follows a spatiotemporal lateral-to-medial gradient in ventricular zone progenitors that accompanies a transition from the production of deep-layer to upper-layer neurons. Brn1/2 protein only accumulates to sufficient levels to be inherited by neural progeny starting at mid-neurogenesis, and labels cells switching from deep-layer Ctip2+ identity to Satb2 + upper-layer fate as they migrate to superficial strata of the thickening cortical plate. Using an Engrailed repressor (EnR) fusion protein to attenuate Pou3f transcription in vivo, we demonstrate that sustained neurogenesis after the deep- to upper-layer transition requires the proneual action of the Pou3f factors in ventricular zone progenitors. On the other hand, overexpression of Oct6 (Pou3f1), Brn1, or Brn2 in early neural progenitors is sufficient to cause them to switch to producing Satb2+ upper-layer neurons, many that exhibit robust pia-directed migration. Overexpression of dnMAML, which blocks Notch/RBPJK-mediated transcription, rescues neural commitment lost in Brn-EnR electroporations at E13.5, indicating that the Pou3f class promotes neurogenesis via inhibition of Notch, but generated neurons later display impaired differentiation and migration. This is congruent with our finding that these Pou3fs also regulate transcription factors critical for neurogenic differentiation. We thus identify downstream targets that likely effect these newfound roles of Pou3f factors throughout the entire cascade of late cortical neural differentiation: in neurogenesis, molecular identity, and migratory destination.
机译:上层(II-IV)是哺乳动物新皮层与鸟类或爬虫类背侧皮层相比最显着的特征,并且在灵长类动物中广泛扩展。尽管上层神经元的时间依赖性生成是在其父母祖细胞中进行遗传指导的,但控制细胞内源性命运转变的机制仍然不清楚。最近的报道表明,主要容纳神经祖细胞的皮质心室区(VZ)由异种的亲代细胞组成,这些亲代细胞会产生不同种类的子代神经元和神经胶质。我们对正在发育的小鼠新皮层中的Notch和Neurogenin途径进行了体内操作,从而迫使祖细胞分化为神经元。通过检查所得的细胞身份,我们表明VZ前体之间的异质性开始在空间和时间上与致力于神经命运的第一个分化细胞的出现相吻合。这种神经发生的发作首先发生在小鼠的E11.5处的外侧新皮层,并向内侧扩散。此后不久,在祖细胞之间的迭代和逐步分化过程中指定了上层神经元类别。尽管在任何时间或位置都从VZ强制退出,电穿孔的细胞仍会经过预先指定的程序以实现匹配的层流位置和分子身份。因此,无论退出时间如何,Notch,Neurogenin和Tbr2都可控制分化为适当的神经命运,而VZ中的“自我更新”与逐步限制晚期胎儿细胞命运密切相关。此外,通过检查神经发生的发生和发展中的区域差异,我们提出时间和位置依赖性因子的组合方案调节不同的神经结果。有趣的是,诱导POU-同源域转录因子Pou3f3 / Brn1和Pou3f2 / Brn2在心室区祖细胞中遵循时空的横向至内侧梯度,伴随着从深层神经元到上层神经元产生的过渡。 Brn1 / 2蛋白仅积累到足以在神经发生中期开始被神经后代继承的水平,并且当标记细胞迁移到增厚的皮质板的表层时,标记细胞会从深层Ctip2 +身份切换为Satb2 +上层命运。使用Engrailed阻遏物(EnR)融合蛋白在体内减弱Pou3f转录,我们证明了从深层到上层过渡后的持续神经发生需要心室区祖细胞中Pou3f因子的促进作用。另一方面,Oct6(Pou3f1),Brn1或Brn2在早期神经祖细胞中的过表达足以使它们转换为产生Satb2 +上层神经元,其中许多表现出强大的pia定向迁移。 dnMAML的过量表达可阻断Notch / RBPJK介导的转录,可挽救E13.5处Brn-EnR电穿孔中失去的神经活性,表明Pou3f类通过抑制Notch促进神经发生,但随后产生的神经元则表现出分化和迁移受损。这与我们的发现一致,即这些Pou3fs还调节对于神经原性分化至关重要的转录因子。因此,我们确定了下游靶标,这些靶标可能会在晚期皮质神经分化的整个级联过程中影响Pou3f因子的这些新发现的作用:在神经发生,分子同一性和迁移目的地。

著录项

  • 作者

    Dominguez, Martin Hoeller.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology Neuroscience.;Biology Cell.;Health Sciences Human Development.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号