首页> 外文学位 >Structural Determinants of DNA-binding Specificity for Hox Proteins.
【24h】

Structural Determinants of DNA-binding Specificity for Hox Proteins.

机译:Hox蛋白的DNA结合特异性的结构决定因素。

获取原文
获取原文并翻译 | 示例

摘要

Hox proteins are a group of homeodomain-containing transcription factors that define the body plan in both vertebrates and invertebrates. Mutations in Hox proteins lead to limb malformations or cancer in humans. Despite having homeodomains with similar sequences and structures, the eight Hox proteins in Drosophila exhibit a variety of DNA-binding specificities when they are in complex with their cofactor Extradenticle (Exd), raising the question of how such diverse specificity is generated.;We have identified DNA minor groove shape as a structural determinant for Hox specificity. Using Monte Carlo simulations, we predicted the minor groove widths for Hox-binding sites obtained from a high-throughput experiment - Systematic Evolution of Ligands by Exponential Enrichment with massive parallel sequencing (SELEX-seq). We found that DNA sites selected by anterior Hox proteins have two narrow regions in the minor groove where Hox-Exd binds. In contrast, DNA sites favored by posterior Hox proteins have only one narrow region. Moreover, clustering of Hox proteins based on their preference of DNA minor groove shape reproduced the ordering of Hox genes along the chromosome, suggesting a striking relationship between body axis morphogenesis and nuances in DNA shape.;Intrigued by the question of how DNA shape is recognized, we studied the interactions between an anterior Hox protein, Sex combs reduced (Scr), and its preferential DNA sites identified from SELEX-seq. Through structure-based homology modeling, we found that two Arg residues on the N-terminal arm of Scr specifically recognize the two narrow regions in the minor groove of Scr-favored sites, regardless of their nucleotide identities. Our work leads to a new understanding of the structural basis of specific DNA-binding for Drosophila Hox proteins, linking preference of DNA-binding sites to DNA minor groove shape.;Our studies on Hox-cofactor-DNA structures revealed highly conserved features of protein-DNA recognition, e.g. Hox's Asn51 forms hydrogen bonds to an adenine, which are essential for Hox-DNA binding. In order to automatically identify this type of important interactions, we developed a computational module based on the functional annotation server MarkUs. This module displays a variety of protein-DNA interactions inside query structure and illustrates their degrees of conservation by comparing query structure with its structural homologs. This functional annotation module provides an effective way to analyze protein-DNA recognition and to identify essential interactions.;In this dissertation, Chapter 1 introduces the field of protein-DNA specific recognition from the perspectives of three-dimensional structures, high-throughput experiments, and computational modeling approaches. Chapter 2 introduces the biological background of Hox proteins, focusing on their biological functions, three-dimensional structures, and previous studies on their DNA-binding specificity. Chapter 3 presents the investigation of DNA-binding specificity for Hox-Exd complexes. The role of DNA minor groove width as a structural determinant is demonstrated through Monte Carlo simulations. Chapter 4 describes the homology modeling method for studying DNA minor groove recognition for Scr. The recognition mode of Scr-favored SELEX-seq sequences is inferred through protein-DNA docking and interface optimization. Chapter 5 elucidates the functional annotation module for protein-DNA structures. The functions and features of this module are demonstrated through a case study on a Scr-Exd-DNA structure. Chapter 6 summarizes my research projects described in this dissertation and proposes future directions for studying specific protein-DNA recognition.
机译:Hox蛋白是一组含同源结构域的转录因子,可在脊椎动物和无脊椎动物中定义其身体计划。 Hox蛋白的突变会导致人类肢体畸形或癌症。尽管同源结构域具有相似的序列和结构,但果蝇中的八种Hox蛋白与辅因子Extradenticle(Exd)复杂时仍表现出多种DNA结合特异性,这引发了如何产生这种多样性特异性的问题。鉴定出的DNA小沟形状是Hox特异性的结构决定因素。使用蒙特卡洛模拟,我们预测了从高通量实验获得的Hox结合位点的较小凹槽宽度-通过大规模并行测序(SELEX-seq)通过指数富集进行配体的系统进化。我们发现前Hox蛋白选择的DNA位点在Hox-Exd结合的小沟中有两个狭窄区域。相反,后Hox蛋白所偏爱的DNA位点只有一个狭窄区域。此外,Hox蛋白基于其对DNA小沟形状的偏好而聚类,从而再现了Hox基因在染色体上的顺序,这表明体轴形态发生与DNA形状的细微差别之间存在着惊人的关系。 ,我们研究了前Hox蛋白,性梳减少(Scr)及其从SELEX-seq识别的优先DNA位点之间的相互作用。通过基于结构的同源性建模,我们发现Scr的N末端臂上的两个Arg残基特异性识别Scr偏爱位点的小沟中的两个狭窄区域,而不管它们的核苷酸身份如何。我们的工作使人们对果蝇Hox蛋白质特异DNA结合的结构基础有了新的认识,将DNA结合位点的偏好与DNA小沟形状联系起来;;我们对Hox辅因子DNA结构的研究揭示了蛋白质的高度保守特征-DNA识别,例如Hox的Asn51与腺嘌呤形成氢键,这对于Hox与DNA的结合至关重要。为了自动识别这种类型的重要交互,我们基于功能注释服务器MarkUs开发了一个计算模块。该模块显示查询结构内部各种蛋白质-DNA相互作用,并通过将查询结构与其结构同源物进行比较来说明其保守程度。该功能注释模块提供了一种有效的方法来分析蛋白质-DNA识别并识别必要的相互作用。;本论文的第一章从三维结构,高通量实验,和计算建模方法。第2章介绍了Hox蛋白的生物学背景,着重于它们的生物学功能,三维结构以及有关其DNA结合特异性的先前研究。第3章介绍了Hox-Exd复合物的DNA结合特异性研究。 DNA小沟宽度作为结构决定因素的作用已通过蒙特卡洛模拟得到了证明。第4章介绍了用于研究Scr DNA小沟识别的同源性建模方法。通过蛋白质-DNA对接和界面优化,推断出Scr偏爱的SELEX-seq序列的识别模式。第5章阐明了蛋白质-DNA结构的功能注释模块。通过对Scr-Exd-DNA结构进行案例研究,演示了该模块的功能和特性。第六章总结了我在本文中描述的研究项目,并提出了研究特定蛋白质-DNA识别的未来方向。

著录项

  • 作者

    Liu, Peng.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biophysics General.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号