首页> 外文学位 >Quantification of collagen fiber organization in biological tissues at cellular and molecular scales using second-harmonic generation imaging.
【24h】

Quantification of collagen fiber organization in biological tissues at cellular and molecular scales using second-harmonic generation imaging.

机译:使用二次谐波成像技术在细胞和分子尺度上定量生物组织中胶原纤维的组织。

获取原文
获取原文并翻译 | 示例

摘要

Collagen is the most abundant structural protein found in the human body, and is responsible for providing structure and function to tissues. Collagen molecules organize naturally into structures called fibers on the scale of the wavelength of light and lack inversion symmetry, thus allowing for the process of second harmonic generation (SHG) when exposed to intense incident light. We have developed two quantitative techniques: Fourier transform-second-harmonic generation (FT-SHG) imaging and generalized chi2 second-harmonic generation (chi2-SHG) imaging.;In order to show that FT-SHG imaging can be used as a valuable diagnostic tool for real-world biological problems, we first investigate collagenase-induced injury in horse tendons. Clear differences in collagen fiber organization between normal and injured tendon are quantified. In particular, we observe that the regularly oriented organization of collagen fibers in normal tendons is disrupted in injured tendons leading to a more random organization. We also observe that FT-SHG microscopy is more sensitive in assessing tendon injury compared to the conventional polarized light microscopy. The second study includes quantifying collagen fibers in cortical bone using FT-SHG imaging and comparing it with scanning electron microscopy (SEM). Further, as an example study, we show how FT-SHG imaging could be used to quantify changes in bone structure as a function of age. Some initial work and future directions for extending FT-SHG to 3D are also discussed.;The second technique, chi2-SHG imaging, takes advantage of the coherent nature of SHG and utilizes polarization to extract the second-order susceptibility (d elements) which provides information on molecular organization, i.e., it provides access to sub-diffractional changes "optically". We use chi2-SHG in combination with FT-SHG imaging to investigate a couple of biological problems. First, we quantify differences in collagen fiber organization between cornea and sclera of the eye in order to investigate their properties of transparency and opacity, respectively. We find from chi2-SHG imaging that there is no statistical difference in the values of d elements between cornea and sclera, indicating that the underlying collagen structure generating SHG from the two is similar at the level of detection of SHG microscopy. However, the difference lies in the spatial organization of these collagen fibers as observed from FT-SHG imaging. We find that cornea contains lamellae with patches of ordered and uniform diameter collagen fibers with axial order, which could be the reason for its transparent behavior. Conversely, there are no lamellae in sclera (i.e., no axial order), and fibers are thicker, denser, have inconsistent diameters, and possess relatively inhomogeneous orientations, leading to its opaque nature.;We also utilized the two techniques to assess differences in stromal collagen fibers for several human breast tissue conditions: normal, hyperplasia, dysplasia, and malignant. Using FT-SHG imaging, we note differences between malignant and other pathological conditions through the metric A.I. ratio. Using generalized chi2-SHG imaging, we observe structural changes in collagen at the molecular scale, and a particular d element showed a more sensitive differentiation between breast tissue conditions, except between hyperplasia and normal/dysplasia. We also find that the trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). Furthermore, the percentage of abnormal collagen fibers could potentially be used as a metric for differentiating breast tissue conditions.;We also introduce a technique for extending chi2-SHG to fibers with curvature which is useful for generating chi2-image maps (in terms of d elements) instead of the conventional SHG intensity images. The spatial variations in d elements will provide additional information. For example, in breast cancer tissues, it may help in observing how fibers change from normal to malignant spatially, especially around region of cancerous cells. Finally, we discuss some of the interesting immediate and later future work of quantitative SHG imaging we aim to carry out in our lab. (Abstract shortened by UMI.).
机译:胶原蛋白是人体中发现的最丰富的结构蛋白,负责为组织提供结构和功能。胶原蛋白分子在光的波长范围内自然地组织成称为纤维的结构,并且缺乏反转对称性,因此当暴露于强烈的入射光下时,可以产生二次谐波(SHG)。我们已经开发了两种定量技术:傅里叶变换二次谐波生成(FT-SHG)成像和广义chi2次谐波生成(chi2-SHG)成像。为了证明FT-SHG成像可以用作有价值的作为针对现实世界生物学问题的诊断工具,我们首先研究胶原酶诱发的马腱损伤。定量分析正常肌腱和受伤肌腱之间胶原纤维组织的明显差异。特别地,我们观察到正常肌腱中胶原纤维的规则定向组织在受伤的肌腱中被破坏,导致更加随机的组织。我们还观察到,与传统的偏光显微镜相比,FT-SHG显微镜在评估肌腱损伤方面更为敏感。第二项研究包括使用FT-SHG成像对皮质骨中的胶原纤维进行定量,并将其与扫描电子显微镜(SEM)进行比较。此外,作为示例研究,我们展示了如何将FT-SHG成像用于量化随年龄变化的骨骼结构变化。还讨论了将FT-SHG扩展到3D的一些初步工作和未来的方向。第二种技术,chi2-SHG成像,利用了SHG的相干特性,并利用偏振提取了二阶磁化率(d元素),提供有关分子组织的信息,即,它提供了“光学地”访问亚衍射变化的信息。我们将chi2-SHG与FT-SHG成像结合使用来研究几个生物学问题。首先,我们量化眼角膜和巩膜之间胶原纤维组织的差异,以分别研究其透明性和不透明性。我们从chi2-SHG成像中发现,角膜和巩膜之间d元素的值没有统计学差异,这表明从SHG显微镜的检测水平来看,从两者生成SHG的潜在胶原蛋白结构相似。但是,差异在于从FT-SHG成像观察到的这些胶原纤维的空间组织。我们发现角膜包含片状细胞,片状细胞具有规则且直径均匀且轴向排列的胶原纤维,这可能是其透明行为的原因。相反,巩膜中没有薄片(即无轴序),纤维更粗,更密,直径不一致且取向相对不均匀,从而导致其不透明。我们还利用这两种技术评估了适用于多种人类乳房组织疾病的基质胶原纤维:正常,增生,异型增生和恶性。使用FT-SHG成像,我们通过指标A.I.注意到恶性和其他病理状况之间的差异。比。使用广义的chi2-SHG成像,我们观察到了分子水平胶原蛋白的结构变化,并且特定的d元素在乳腺组织状况之间(除了增生和正常/异常增生之间)显示出更加敏感的区分。我们还发现,与常规使用的六边形对称性(C6)相反,三角对称性(3m)是一种更合适的模型来描述恶性组织中的胶原纤维。此外,异常胶原纤维的百分比可能有可能用作区分乳房组织状况的指标。;我们还引入了一种将chi2-SHG扩展到曲率纤维的技术,该技术可用于生成chi2-图像图(根据d元素),而不是传统的SHG强度图像。 d元素的空间变化将提供其他信息。例如,在乳腺癌组织中,这可能有助于观察纤维在空间上如何从正常变为恶性,尤其是在癌细胞周围。最后,我们讨论了我们打算在实验室中进行的定量SHG成像的一些有趣的近期和未来工作。 (摘要由UMI缩短。)。

著录项

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Electrical engineering.;Optics.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号