首页> 外文学位 >Stainless steel and silicon direct interface synthesis: Chemical bonding effects.
【24h】

Stainless steel and silicon direct interface synthesis: Chemical bonding effects.

机译:不锈钢和硅直接界面合成:化学键合作用。

获取原文
获取原文并翻译 | 示例

摘要

Planar stainless steel/stainless steel interfaces, with and without a titanium interlayer and silicon/silicon interfaces have been produced in an ultra high vacuum (UHV) diffusion bonding/deposition instrument. Interface synthesis was accomplished by diffusion bonding two substrates after subjecting the substrate surfaces to a variety of pre-bonding treatments including heat treating, ion-beam sputter cleaning and thin film deposition. Chemical characterization was performed in situ by Auger electron spectroscopy (AES) prior to deposition and/or bonding and ex situ by energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Additionally, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study interfaces before and after bonding.; Diffusion bonding behavior of stainless steel depends strongly on the chemistry of the surfaces to be bonded. Very smooth, mechanically polished and lapped substrates would bond completely in UHV in 1 hour at 1000°C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion beam cleaning. No voids were observed in these bonded interfaces as studied by TEM and the strength was equal to the unbonded bare material. When an electron beam deposited, 200 A titanium interlayer was added to the stainless steel interface, while bonding under the same conditions, mechanical tensile testing resulted in very low strength when compared with that of chemically clean stainless steel interfaces. Analytical inspection of the interfaces, performed with EELS, EDS, and convergent beam electron diffraction (CBED) coupled with images from TEM and SEM, showed the reason for the significantly reduced strength is a result of limited contact area and delamination between titanium carbide particles precipitated in the interface.; Silicon wafers bicrystals were synthesized by bonding two single-crystal substrates. Silicon wafers were plasma or ion cleaned, chemically treated, and UHV thermal desorption annealed in different combinations to find the best method for providing smooth, contamination free substrates that will produce an atomically flat, chemically clean silicon/silicon bonded interface. Plasma cleaned wafers which were subsequently HF and de-ionized water dipped resulted in a flat and void free wafer bonded interface that was structurally sharp on the atomic scale.
机译:在超高真空(UHV)扩散键合/沉积仪器中已生产出带有或不带有钛中间层和硅/硅界面的平面不锈钢/不锈钢界面。界面合成是通过在对基板表面进行各种预粘合处理(包括热处理,离子束溅射清洗和薄膜沉积)之后,通过扩散粘合两个基板来完成的。在沉积和/或键合之前,通过俄歇电子能谱(AES)原位进行化学表征,并通过能量色散X射线能谱(EDS)和电子能量损失能谱(EELS)进行非原位化学表征。另外,透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)用于研究粘接前后的界面。不锈钢的扩散粘结行为在很大程度上取决于待粘结表面的化学性质。如果通过离子束清洗去除了基材上的天然氧化物,则非常光滑,经过机械抛光和研磨的基材将在1000℃,3.5 MPa单轴压力下于1小时内在UHV中完全粘合。通过TEM研究,在这些粘合界面中未观察到空隙,并且强度等于未粘合的裸露材料。当沉积电子束时,将200 A钛中间层添加到不锈钢界面中,同时在相同条件下进行粘合,与化学清洁的不锈钢界面相比,机械拉伸试验导致强度非常低。用EELS,EDS和会聚束电子衍射(CBED)结合来自TEM和SEM的图像对界面进行分析检查,结果表明,强度显着降低的原因是有限的接触面积和沉淀的碳化钛颗粒之间的分层在界面中。通过键合两个单晶衬底来合成硅晶片双晶。硅晶片经过等离子或离子清洗,化学处理和UHV热脱附,以不同的组合进行退火,以找到提供光滑,无污染的基板的最佳方法,该基板将产生原子平面的,化学清洁的硅/硅键合界面。等离子清洗过的晶片,随后用HF和去离子水浸渍,形成了一个平坦且无空隙的晶片键合界面,该界面在原子尺度上非常锋利。

著录项

  • 作者

    Cox, Michael J.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号