首页> 外文学位 >Sleepy stack: A new approach to low power VLSI logic and memory.
【24h】

Sleepy stack: A new approach to low power VLSI logic and memory.

机译:休眠堆栈:一种用于低功耗VLSI逻辑和存储器的新方法。

获取原文
获取原文并翻译 | 示例

摘要

New low power solutions for Very Large Scale Integration (VLSI) are proposed. Especially, we focus on leakage power reduction. Although neglected at 0.18u technology and above, leakage power is nearly equal to dynamic power consumption in nanoscale technology, e.g., 0.07u.; We present a novel circuit structure, we call it "sleepy stack," which is a combination of two well-known low-leakage techniques the forced stack and sleep transistor techniques. Unlike the forced stack technique, the sleepy stack technique can utilize high-Vth transistors without incurring a large delay increase. Also, unlike the sleep transistor technique, the sleepy stack technique can retain exact logic state while achieving similar leakage power savings. In short, our sleepy stack structure achieves ultra-low leakage power consumption while retaining logic state.; We apply the sleepy stack technique to both generic logic circuits as well as SRAM. At 0.07u technology, the sleepy stack logic circuits achieves up to 200x leakage reduction compared the forced stack technique with small (under 7%) delay variations and 51∼118% area overheads. The sleepy stack SRAM cell with 1.5xVth achieves 5x leakage reduction with 32% delay increase or 2.49x leakage reduction without delay increase compared to the high-Vth SRAM cell. As such, the sleepy stack technique can be applicable to a design that requires ultra-low leakage power with quick response time while paying area and delay cost.; We also propose a new low power architectural technique named Low-Power Pipelined Cache (LPPC). Although a conventional pipelined cache is mainly used to reduce cache access time, we lower supply voltage of cache using LPPC to save dynamic power. We achieve 20.43% processor dynamic energy savings with 4.14% execution cycle increase using 2-stage low-Vdd LPPC. Furthermore, we apply LPPC to the sleepy stack SRAM. The sleepy stack pipelined SRAM achieves 17x leakage power reduction while increasing execution time by 4% on average. Although this combined technique increases active power consumption by 33%, this technique is well suited for the system that spends most of its time in sleep mode.
机译:提出了用于超大规模集成(VLSI)的新的低功耗解决方案。特别是,我们专注于降低泄漏功率。尽管在0.18u及以上的技术中被忽略,但是泄漏功率几乎等于纳米级技术中的动态功耗,例如0.07u。我们提出了一种新颖的电路结构,我们称之为“休眠堆栈”,它是两种众所周知的低泄漏技术(强制堆栈和休眠晶体管技术)的组合。与强制堆叠技术不同,困堆技术可以利用高Vth晶体管而不会引起大的延迟增加。而且,与睡眠晶体管技术不同,睡眠堆栈技术可以保留精确的逻辑状态,同时实现相似的泄漏功率节省。简而言之,我们的休眠堆栈结构在保持逻辑状态的同时实现了超低的泄漏功耗。我们将休眠堆栈技术应用于通用逻辑电路和SRAM。在采用0.07u技术时,与强制堆栈技术相比,休眠堆栈逻辑电路可实现高达200倍的泄漏减少,而延迟变化小(低于7%),面积开销为51%至118%。与高Vth SRAM单元相比,具有1.5xVth的休眠堆栈SRAM单元实现了5倍的泄漏减少,延迟增加了32%,或2.49倍的泄漏减少而没有延迟增加。这样,困堆技术可以应用于要求超低泄漏功率,响应时间快,同时又要节省面积和延迟成本的设计。我们还提出了一种新的低功耗架构技术,称为低功耗流水线缓存(LPPC)。尽管主要使用传统的流水线缓存来减少缓存访问时间,但我们使用LPPC降低了缓存的电源电压以节省动态功耗。使用2级低Vdd LPPC,我们可以实现20.43%的处理器动态节能,并增加4.14%的执行周期。此外,我们将LPPC应用于休眠堆栈SRAM。昏昏欲睡的堆栈流水线SRAM降低了17倍的泄漏功率,同时平均提高了4%的执行时间。尽管此组合技术使有功功率消耗增加了33%,但该技术非常适合将大部分时间花费在睡眠模式下的系统。

著录项

  • 作者

    Park, Jun Cheol.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号