首页> 外文学位 >Noninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running.
【24h】

Noninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running.

机译:在包括步行和跑步在内的移动任务期间,人脑的无创电神经成像。

获取原文
获取原文并翻译 | 示例

摘要

Noninvasive brain imaging during mobile activities could have far reaching scientific, clinical, and technological benefits. Electroencephalography (EEG) is the only mobile noninvasive sensing modality with sufficient temporal resolution to record brain activity on the time scale of natural motor behavior. In the past, EEG has been limited to stationary settings to prevent contamination by electromyographic and movement artifacts. I overcame this limitation by using Independent Component Analysis (ICA) to parse electrocortical processes from artifact contaminated EEG.;Chapters 2 through 4 of this dissertation demonstrate the feasibility of measuring electrocortical activity during human locomotion. In Chapter 2, subjects performed a visual target discrimination and response task while standing, walking, and running. Cognitive event-related cortical potentials during walking and running were nearly identical to those during standing. Chapter 3 provided the first intra-stride measurements of brain activity during walking. Electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex exhibited significant intra-stride changes in spectral power. A substantive scientific contribution of this study is the observation that synchronous neural firing in the anterior cingulate and posterior parietal cortex, not just the sensorimotor cortex, is modulated within the stride cycle during repetitive, steady-state locomotion. A 264-channel electrode array was used in Chapters 2 and 3. By systematically reducing the number of channels used, Chapter 4 demonstrated that 35 channels were sufficient to record the most dominate electrocortical sources.;In Chapters 5 and 6, I studied healthy subjects performing isometric and isotonic lower-limb muscle contractions while seated to better understand the relationship between electrocortical dynamics and lower limb muscle activity. Isometric contractions elicited motor cortex event related desynchronization at joint torque onset and offset, while isotonic contractions elicited sustained cortical desynchronization throughout the movement. There was significant coherence between contralateral motor cortex signals and lower-limb electromyographic signals. The frequency of this coherence shifted from the beta-range for isometric contractions to the gamma-range for isotonic contractions.;This dissertation demonstrated that EEG-based brain imaging in dynamic environments is possible and expanded our understanding of cortical involvement in voluntary lower limb movement. It also provided direction for future developments of clinical neuro-monitoring, neuro-assessment, and neuro-rehabilitation technologies.
机译:移动活动期间的非侵入性大脑成像可能具有深远的科学,临床和技术优势。脑电图(EEG)是唯一具有足够时间分辨率的移动无创感测模式,可以在自然运动行为的时间尺度上记录大脑活动。过去,EEG已被限制在固定位置,以防止被肌电图和运动伪影污染。我通过使用独立分量分析(ICA)来分析受伪影污染的EEG的电皮层过程,从而克服了这一局限性。本文的第2章至第4章证明了在人体运动过程中测量电皮层活动的可行性。在第二章中,受试者在站立,行走和跑步时执行视觉目标识别和响应任务。步行和跑步过程中与认知事件相关的皮层电势与站立时几乎相同。第3章提供了步行过程中大脑活动的首次跨步测量。前扣带回,顶叶后壁和感觉运动皮层中的电皮层源在谱功率上表现出显着的跨步变化。这项研究的实质性科学贡献是观察到,在反复的稳态运动过程中,前扣带和顶顶后皮层(而不只是感觉运动皮层)的同步神经放电在步幅周期内得到了调节。第2章和第3章使用了一个264通道的电极阵列。通过系统地减少使用的通道数量,第4章证明了35个通道足以记录最主要的电皮层源。;在第5和第6章中,我研究了健康受试者坐着时执行等距和等张的下肢肌肉收缩,以更好地了解皮层动态与下肢肌肉活动之间的关系。等距收缩在关节扭矩开始和偏移时引起与运动皮质相关的失步,而等张收缩在整个运动过程中引起持续的皮质失步。对侧运动皮层信号和下肢肌电信号之间存在显着的一致性。这种相干的频率从等距收缩的β范围转变为等渗收缩的γ范围。论文证明了在动态环境中基于EEG的脑部成像是可能的,并扩展了我们对皮层参与自愿下肢运动的理解。它还为临床神经监控,神经评估和神经康复技术的未来发展提供了方向。

著录项

  • 作者

    Gwin, Joseph T.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号