首页> 外文学位 >Microstructure, vacancies and voids in hydrogenated amorphous silicon.
【24h】

Microstructure, vacancies and voids in hydrogenated amorphous silicon.

机译:氢化非晶硅的微观结构,空位和空隙。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a theoretical and computational study of microstructure, vacancies and voids in hydrogenated amorphous silicon (a-Si:H). The microstructure consists of all possible silicon-hydrogen bonding configurations such as SiH, SiH2, SiH3 and SiH 4. However, it is highly dominated (approximately 75% or even more) by monohydride (SiH) configurations. Furthermore, the hydrogen atoms locate in both clustered and diluted phases; as a result, the distribution becomes highly inhomogeneous. Approximately 5% of hydrogen atoms reside in a form of isolated monohydrides at the lower (7 at.%) concentration whereas such configurations do not appear at the higher concentrations (≥14 at.%).;The microstructure is further enriched with different types of vacancies such as mono- and divacancies. At the lower hydrogen content, it consists of split divacancies whereas voids appear in the higher concentrations (≥16 at.%). Structures of the voids are highly irregular and their internal surfaces consist of 6–16 hydrogen atoms. The microstructure further shows hydrogen molecules within the voids at the higher (≥16 at.%) concentrations. However, the concentration of the molecules is very low, in a range of 0.9–1.4% of the total hydrogen atoms.;In order to investigate the microstructure in further detail, an approximate calculation of the nuclear magnetic resonance (NMR) line spectra is performed. The approximated line spectrum is a superposition of broad (19–50 kHz) and narrow line widths (1.7–6 kHz) depending on the concentration of hydrogen atoms. These observations are in excellent agreement with infrared (IR), nuclear magnetic resonance (NMR), multiple quantum nuclear magnetic resonance (MQ-NMR) and calorimetry experiments as well as ab initio calculations.
机译:本文对氢化非晶硅(a-Si:H)的微观结构,空位和空隙进行了理论和计算研究。微观结构包括所有可能的硅氢键构型,例如SiH,SiH2,SiH3和SiH4。但是,它被一元氢化(SiH)构型高度控制(大约75%甚至更高)。此外,氢原子位于聚集相和稀释相中。结果,分布变得高度不均匀。大约5%的氢原子以较低的(7 at。%)浓度以孤立的一元氢化物的形式存在,而在较高的浓度(≥14at。%)则不会出现这种构型。空缺,例如单空缺和双空缺。在较低的氢含量下,它由分裂的空位组成,而在较高的浓度下(≥16at。%)会出现空隙。空隙的结构高度不规则,其内表面由6–16个氢原子组成。微观结构还显示出空隙中的氢分子浓度更高(≥16 at。%)。但是,分子的浓度非常低,在总氢原子的0.9-1.4%范围内。;为了更详细地研究微观结构,需要对核磁共振(NMR)线谱进行近似计算执行。近似的谱线是宽谱线(19–50 kHz)和窄谱线宽度(1.7–6 kHz)的叠加,具体取决于氢原子的浓度。这些观察结果与红外(IR),核磁共振(NMR),多量子核磁共振(MQ-NMR)和量热实验以及从头算计算非常吻合。

著录项

  • 作者

    Timilsina, Rajendra.;

  • 作者单位

    The University of Southern Mississippi.;

  • 授予单位 The University of Southern Mississippi.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号