首页> 外文学位 >Carbon Sequestration through Biochar Soil Amendment: Experimental studies and mathematical modeling.
【24h】

Carbon Sequestration through Biochar Soil Amendment: Experimental studies and mathematical modeling.

机译:通过生物炭土壤改良剂固碳:实验研究和数学模型。

获取原文
获取原文并翻译 | 示例

摘要

Intentional amendment of soil with charcoal (called biochar) is a promising new approach to sequester atmospheric carbon dioxide and increase soil fertility. However, the environmental properties of biochars can vary with production conditions, making it challenging to engineer biochars that are simultaneously optimized for carbon sequestration, nutrient storage, and water-holding capacity.;For this reason, I have undertaken a systematic study to (a) determine the pyrolysis conditions that lead to biochars with desired chemical and physical properties, and (b) find how these properties affect the water-holding capacity and nutrient adsorption in biochar-soil mixtures.;First, a library of biochars was produced in a custom-built pyrolysis reactor under precisely controlled conditions. The chemical and physical structures of the produced biochars were characterized with various analytical techniques including 13C NMR, XPS, EA and BET pore surface analysis. My results suggest that the chemical composition and pore structure of biochars are determined not just by the maximum heat treatment temperature, but also by several other factors that include the pyrolysis heating rate, treatment time at the maximum temperature and particle size.;I also tested a new approach that combines thermogravimetric reactivity measurements, diffusion-reaction theory and structural models to achieve a better characterization of the complicated multi-scale pore structure of biochars. The structural models treat biochars as porous solids having micro- and macropores of different shapes and exhibiting widely ranging pore-size distributions. Simulations results are then compared to experimental data to identify the presence of ordered or random pore networks and test their size distributions and connectivity.;I then developed a multi-solid one-dimensional model that can use experimentally determined biochar properties to predict their field performance in beds packed with soil/biochar mixtures. The model used a system of coupled partial differential equations to describe the dynamic adsorption/elution of ammonium nitrate, a model fertilizer, in columns packed with biochar/soil mixtures and perfused with aqueous solutions of the fertilizer. The PDE system was solved using orthogonal collocation on finite elements. My chromatographic model accounted for all the important processes occurring in this system, including external mass transfer between the fluid phase and the solid particles, as well as intraparticle diffusion and adsorption of the solute on the pore surface area of the sorbents. To our knowledge, this is the first chromatographic model that accounted explicitly for the presence of two solid phases with widely different pore structures and adsorption capacities. A systematic parametric study was carried out to determine the importance of each system parameter. The adsorption equilibrium parameters and the intraparticle effective diffusivity of ammonium had the most significant effect on environmental performance.;To complete the theoretical analysis, I also developed a model to describe the saturation and drainage of water from the packed column. The model accounted for all the important processes occurring in this system: (a) water exchange between the interstitial pore region and two different smaller pore regions and (b) water flow inside the larger pore region and the two different smaller pore regions. The transient mass balances led to a system of partial differential equations that was solved using block centered finite difference.
机译:用木炭有意地改良土壤(称为生物炭)是一种有前途的新方法,可以隔离大气中的二氧化碳并提高土壤肥力。但是,生物炭的环境特性会随生产条件的不同而变化,这使得工程设计同时针对碳固存,养分储存和持水能力进行优化的生物炭具有挑战性。因此,我对(a )确定导致生物炭具有所需化学和物理性质的热解条件,(b)发现这些性质如何影响生物炭-土壤混合物中的持水量和养分吸收。;首先,在生物炭中产生了生物炭库在精确控制的条件下定制的热解反应器。通过各种分析技术,包括13 C NMR,XPS,EA和BET孔表面分析,对所生产生物炭的化学和物理结构进行了表征。我的结果表明,生物炭的化学成分和孔结构不仅取决于最高热处理温度,还取决于其他几个因素,包括热解加热速率,最高温度下的处理时间和粒径。结合热重反应性测量,扩散反应理论和结构模型的新方法,可以更好地表征生物炭复杂的多尺度孔结构。结构模型将生物炭视为具有不同形状的微孔和大孔的多孔固体,并具有广泛的孔径分布。然后将模拟结果与实验数据进行比较,以识别有序或随机孔网络的存在,并测试其尺寸分布和连通性。然后,我开发了一个多固体一维模型,该模型可以使用实验确定的生物炭特性来预测其田间性能在装有土壤/生物炭混合物的床上。该模型使用耦合的偏微分方程系统描述了硝酸铵(一种模型肥料)在填充有生物炭/土壤混合物并灌注了肥料水溶液的色谱柱中的动态吸附/洗脱。通过在有限元上使用正交配置解决了PDE系统。我的色谱模型考虑了该系统中发生的所有重要过程,包括液相和固体颗粒之间的外部质量转移,以及颗粒内部的扩散以及溶质在吸附剂孔表面的吸附。据我们所知,这是第一个色谱模型,该模型明确说明了存在两种孔隙结构和吸附能力差异很大的固相。进行了系统的参数研究,以确定每个系统参数的重要性。铵的吸附平衡参数和颗粒内有效扩散率对环境性能的影响最大。为了完成理论分析,我还建立了一个模型来描述填充塔中水的饱和和排水。该模型考虑了该系统中发生的所有重要过程:(a)间隙孔隙区域与两个不同的较小孔隙区域之间的水交换,(b)较大孔隙区域和两个不同较小孔隙区域内部的水流。瞬态质量平衡导致了偏微分方程系统,该系统使用以块为中心的有限差分来求解。

著录项

  • 作者

    Sun, Hao.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Applied Mathematics.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号