首页> 外文学位 >A study of the viscous interaction between the solar wind and earth's magnetosphere using an MHD simulation.
【24h】

A study of the viscous interaction between the solar wind and earth's magnetosphere using an MHD simulation.

机译:利用MHD模拟研究太阳风与地球磁层之间的粘性相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The solar wind interacts with Earth's magnetosphere largely through magnetic reconnection and a "viscous-like" interaction that is not fully understood. The ionospheric cross-polar cap potential (phi PC) component due to reconnection (phiR) is typically much larger than the viscous component (phiV) and very dynamic, making detailed studies of the viscous potential difficult. We used the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamic (MHD) simulation to study the viscous potential by running LFM for a variety of solar wind density and velocity values and ionospheric Pedersen conductance (SigmaP) values, but no solar wind magnetic field, so that phiPC was entirely due to the viscous interaction. We found that phiV increased with solar wind density, scaling as n0.439 (n in cm -3), and phiV increased with solar wind velocity, scaling as V1.33 (V in km s -1); these results were combined to create a formula for phi V in LFM, using a SigmaP value that produces realistic potentials: phiV = (0.00431)n0.439 V1.33 (in kV), which matches simulation results very well. phiV also varied inversely with SigmaP, as predicted by previous theory. The form of this formula is similar to results from the Newell et al. [2008] empirical study, which tested a list of viscous coupling functions and found that n 1/2V2 worked best (but did not create a formula to predict potentials, so actual viscous potential values could not be compared).;The Bruntz et al. formula was also compared to LFM results from a run with real solar wind input, from the Whole Heliosphere Interval (WHI), which lasted from 20 March to 16 April 2008. LFM was first run with the full solar wind from the WHI, then with the same solar wind but zero interplanetary magnetic field (IMF), which meant that phiPC = phiV for that run. These runs were performed with the empirical ionospheric solver, using the average F10.7 flux value from the WHI as input. This empirical ionosphere is known to produce potentials that are higher than observations, so the output was scaled down to match the range of the Bruntz et al. formula with a scaling factor gamma = 1.542, which was found from 11 steady periods in the WHI. Those same periods were also used to calibrate the Newell et al. viscous scaling factor, turning it into a predictive formula: phiV = (6.39x10 -5)n1/2V2 (in kV). Both viscous potential formulas were compared to phiPC from the zero-IMF run, producing phiV values that were very close to the LFM phiPC values, differing in opposite ways in some places, but with essentially identical correlation coefficients.;We also used the gamma factor to scale phiPC from the full-IMF LFM run down, then compared it to phiPC from the Weimer05 empirical model. The two matched well in the higher phiPC values, but the Weimer05 phiPC values reached a minimum "floor" value, while the LFM phiPC has no such floor, and so dropped much lower in some places. The fact that gamma scaled the full-IMF LFM down to match the Weimer05 values, even though gamma was derived from very different runs and conditions, is interpreted to support the idea that the cause of high LFM potentials is in the ionospheric conductivity, since gamma is derived from the higher-conductivity-based Bruntz et al. formula.
机译:太阳风主要通过磁性重新连接和尚不完全了解的“类粘性”相互作用与地球磁层相互作用。由于重新连接(phiR)而产生的电离层跨极帽电势(phi PC)分量通常比粘性分量(phiV)大得多并且非常动态,这使得对粘性电势进行详细研究变得困难。我们使用Lyon-Fedder-Mobarry(LFM)磁流体动力学(MHD)模拟,通过运行LFM来研究各种太阳风密度和速度值以及电离层Pedersen电导(SigmaP)值的黏性电势,但没有太阳风磁场,因此phiPC完全归因于粘性相互作用。我们发现phiV随着太阳风密度的增加而增加,缩放为n0.439(n in cm -3),并且phiV随着太阳风速度的增加而增加,缩放为V1.33(V in km s -1)。将这些结果结合起来,使用产生实际电势的SigmaP值创建LFM中phi V的公式:phiV =(0.00431)n0.439 V1.33(以kV为单位),与模拟结果非常匹配。如先前理论所预测,phiV与SigmaP呈反比关系。该公式的形式类似于Newell等人的结果。 [2008]一项经验研究,该实验测试了一系列粘性耦合函数,发现n 1 / 2V2效果最佳(但未创建公式来预测电势,因此无法比较实际的粘性电势值)。 。公式还与2008年3月20日至4月16日的全太阳间隔(WHI)实际太阳风输入运行的LFM结果进行了比较。LFM首先使用WHI的全太阳风运行,然后使用相同的太阳风,但行星际磁场(IMF)为零,这意味着该运行的phiPC = phiV。这些运行是使用经验性电离层解算器进行的,使用来自WHI的平均F10.7通量值作为输入。已知这种经验电离层产生的电势比观测值高,因此将输出缩小以匹配Bruntz等人的范围。比例因子gamma = 1.542的公式,该公式是从WHI的11个稳定周期中得出的。那些相同的时期也被用来校准Newell等。粘性比例因子,将其转换为预测公式:phiV =(6.39x10 -5)n1 / 2V2(以kV为单位)。从零-IMF运行中将这两个粘性势公式与phiPC进行了比较,产生的phiV值非常接近LFM phiPC值,在某些地方以相反的方式有所不同,但是具有基本相同的相关系数。从完整的IMF LFM缩减phiPC规模,然后将其与Weimer05经验模型中的phiPC进行比较。两者在较高的phiPC值上匹配得很好,但Weimer05的phiPC值达到了最小的“底”值,而LFM的phiPC没有这样的下限,因此在某些地方下降得低得多。尽管伽马来自不同的运行和条件,但伽马将整个IMF LFM缩小到与Weimer05值相匹配的事实被解释为支持以下观点:LFM电位高的原因在于电离层电导率,因为伽马源自较高电导率的Bruntz等人。式。

著录项

  • 作者

    Bruntz, Robert Jeffrey.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Physics Astrophysics.;Physics Fluid and Plasma.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号