首页> 外文学位 >Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption.
【24h】

Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption.

机译:预应力光伏组件的潜在诱导降解(PID):玻璃表面电导破坏的影响。

获取原文
获取原文并翻译 | 示例

摘要

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60°C and 85°C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
机译:高系统电压导致的潜在感应退化(PID)是光伏(PV)模块的主要退化机制之一,由于以下因素的综合影响,会对它们的性能产生不利影响:系统电压,覆层/玻璃表面电导率,密封剂电导率,氮化硅减反射涂层的特性和界面特性(玻璃/密封剂;密封剂/电池;密封剂/底片)。先前在ASU的光伏可靠性实验室(ASU-PRL)进行的研究表明,只有负电压偏置(正接地系统)会对常用的晶体硅模块的性能产生不利影响。在以前的研究中,使用从玻璃表面延伸到框架的导电碳层或环境室内的湿度来获得玻璃表面的表面电导率。本文研究了玻璃表面电导率破坏对光伏组件的影响。在这项研究中,仅在模块的玻璃表面上施加了导电碳,而没有延伸到框架,并且在距框架内边缘外围2cm的距离处,表面导电性被破坏(无碳层)。这项研究是在干热下,在两个不同的温度(60°C和85°C)和三个不同的负偏置电压(-300V,-400V和-600V)下进行的。为了复制与现场条件的亲密关系,在湿热条件下将选定模块的一半预应力1000小时(DH 1000),在热循环200小时(TC 200)下施加其余应力。如本研究所示,当通过从框架到导电层边缘保持2 cm的间隙破坏表面连续性时,即使在高温下施加35个小时的负偏压后,也没有发现或忽略不计的降解。这项初步研究似乎表明,如果玻璃表面电导率的连续性在框架的内部边界处被破坏,则组件可能不受PID损失的影响。由于在潮湿条件下会形成水层,因此靠近玻璃框的玻璃表面电导率仅通过施加防水性(疏水性)但具有高透光率的表面涂层(例如特氟龙)或修饰玻璃框/玻璃边缘即可破坏具有拒水性能。

著录项

  • 作者

    Tatapudi, Sai Ravi Vasista.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Alternative Energy.;Energy.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2012
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号