首页> 外文学位 >Design and development of a multifunctional nano carrier system for imaging, drug delivery, and cell targeting in cancer research.
【24h】

Design and development of a multifunctional nano carrier system for imaging, drug delivery, and cell targeting in cancer research.

机译:多功能纳米载体系统的设计和开发,用于癌症研究中的成像,药物输送和细胞靶向。

获取原文
获取原文并翻译 | 示例

摘要

There has been an increasing need in the last decade for early diagnosis and treatment of cancer prior to the tumor mass becoming evident as anatomical anomaly. A major challenge in cancer diagnosis is to distinguish cancer cells from the surrounding, normal tissue. For early cancer diagnosis and treatment, a nano carrier system was designed and developed with key components uniquely structured according to biomedical and clinical requirements: targeting, drug storage capabilities, fluorescent emissions near the infrared range for in vivo imaging, and magnetic hyperthermia. For in vivo imaging, quantum dots with emissions near infrared range (∼800 nm) were conjugated onto the surface of carbon nanotubes and nanospheres consisting of a spherical polystyrene matrix (∼100 nm) and high fraction of superparamagnetic Fe3O4 nanoparticles (∼10 nm) embedded. The QDs on these nano carriers exhibited intense visible emissions using fluorescent spectroscopy and successfully facilitated in vivo soft tissue imaging in mice. For drug storage, the chemotherapeutic agent, paclitaxel (PTX) was loaded onto the surfaces of these nano-carriers by using a layer of biodegradable poly(lactic-co-glycolic acid) (PLGA). A cell-based cytotoxicity assay was employed to verify successful loading of pharmacologically active drug, PTX. Cell viability of human, metastatic PC3mm2 prostate cancer cells was assessed in the presence and absence of various nano-carrier populations using the MTT assay. For hyperthermia, Fe3O 4 nanoparticles were conjugated onto the surfaces of carbon nanotubes (CNT) and embedded into the nanospheres. Magnetization measurements showed nearly reversible hysteresis curves from the Fe3O4-conjugated CNTs and the magnetic nanospheres (MNS). Application of an alternating electromagnetic field effectively induced heating the solution of the Fe3O 4-conjugated CNTs and the magnetic nanospheres (MNS) into temperature ranges (up to 55ºC) suitable for therapeutic hyperthermia. PTX loaded nanocarrier systems were, then, developed by conjugating anti-Prostate Specific Membrane Antigen (anti-PSMA) for in vitro and in vivo targeting. Specific detection studies of anti- PSMA-conjugated nano carrier systems binding activity in LNCaP prostate cancer cells were carried out. Substantial differences were observed between the targeted- and nontargeted nano carriers. LNCaP cells were targeted successfully by the conjugation of anti- PSMA on the nano carrier surfaces. To explore in vivo targeting, the nano carriers conjugated with anti-PSMA were intravenously injected into nude mice bearing a human prostate cancer cell (LNCaP). Upon post-injection, significant fluorescence attributed to the nano-carrier system was detected, indicating substantial uptake in the region of the tumor.
机译:在最近十年中,在肿瘤块明显表现为解剖异常之前,对癌症的早期诊断和治疗的需求不断增长。癌症诊断的主要挑战是将癌细胞与周围的正常组织区分开。对于早期癌症的诊断和治疗,设计并开发了一种纳米载体系统,其关键组件根据生物医学和临床要求进行了独特的结构设计:靶向,药物存储能力,体内成像的红外范围内的荧光发射以及磁热疗。对于体内成像,将具有近红外范围(〜800 nm)发射的量子点共轭到碳纳米管和纳米球的表面上,该纳米球由球形聚苯乙烯基质(〜100 nm)和高比例的超顺磁性Fe3O4纳米粒子(〜10 nm)组成。嵌入式。这些纳米载体上的量子点通过荧光光谱显示出强烈的可见光发射,并成功地促进了小鼠体内软组织成像。对于药物存储,通过使用可生物降解的聚乳酸-乙醇酸共聚物(PLGA)层将化疗药物紫杉醇(PTX)加载到这些纳米载体的表面上。采用基于细胞的细胞毒性试验来验证药理活性药物PTX的成功装载。使用MTT测定法在存在和不存在各种纳米载体群体的情况下评估人转移性PC3mm2前列腺癌细胞的细胞生存力。对于热疗,将Fe3O 4纳米颗粒共轭到碳纳米管(CNT)的表面上并嵌入纳米球中。磁化测量显示,Fe3O4共轭的CNT和磁性纳米球(MNS)的磁滞曲线几乎可逆。交变电磁场的应用有效地感应了将Fe3O 4共轭的CNT和磁性纳米球(MNS)溶液加热到适合治疗性高温的温度范围(最高55ºC)。然后,通过缀合用于体外和体内靶向的抗前列腺特异性膜抗原(anti-PSMA),开发了装载PTX的纳米载体系统。在LNCaP前列腺癌细胞中进行了抗PSMA共轭纳米载体系统结合活性的特异性检测研究。在靶向的和非靶向的纳米载体之间观察到实质性差异。通过在纳米载体表面上结合抗PSMA成功地靶向了LNCaP细胞。为了探索体内靶向,将与抗PSMA缀合的纳米载体静脉内注射到带有人前列腺癌细胞(LNCaP)的裸鼠中。注射后,检测到归因于纳米载体系统的显着荧光,表明在肿瘤区域中大量摄取。

著录项

  • 作者

    Cho, Hoon-Sung.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号