首页> 外文学位 >Design, Fabrication, and Characterization of Solar Cells for High Temperature and High Radiation Space Applications.
【24h】

Design, Fabrication, and Characterization of Solar Cells for High Temperature and High Radiation Space Applications.

机译:用于高温和高辐射空间应用的太阳能电池的设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

In this work, novel III-V photovoltaic (PV) materials and device structures are investigated for space applications, specifically for tolerance to thermal effects and ionizing radiation effects. The first focus is on high temperature performance of GaP solar cells and on performance enhancement through the incorporation of InGaP/GaP quantum well structures. Temperature dependent performance of GaP solar cells is modeled and compared to a modeled temperature dependence of GaAs. The temperature model showed that a GaP cell should have a normalized efficiency temperature coefficient of -1.31 *10 -3 °C-1, while a standard GaAs cell should have a normalized temperature coefficient of -2.23*10 -3 °C-1, representing a 42% improvement in the temperature stability of efficiency. Both GaP and GaAs solar cells were grown using metal organic vapor phase epitaxy and fabricated into solar cell devices. An assortment of optical and electrical characterization was performed on the solar cells. Finally, GaP solar cell performance was measured in an environment simulating the temperatures and light concentrations seen in sub 1 AU solar orbits, simulating the effects on a solar cell as it approaches the sun. A positive normalized temperature coefficient of 2.78*10 -3 °C-1 was measured for a GaP solar cell, indicating an increase in performance with increasing temperature. In addition, comparing results of GaP solar cells with and without quantum wells, the device without MQWs had an integrated short circuit current density of 1.85 mA/cm2 while the device containing quantum wells has a short circuit current density of 2.07 mA/cm 2 or a 12.4% short circuit current increase over that of the device without quantum wells, showing that quantum wells can be used effectively in increasing the current generation in GaP solar cells.;The second focus of this thesis is on the ionizing radiation tolerance of epitaxially lifted off (ELO) InP and InGaAs (lattice-matched to InP) for the purpose of assessing device lifetime in high-radiation Earth orbits. Solar cells are characterized through spectral responsivity as well as illuminated and dark current-voltage (I-V) measurements before being subjected to exposure to a 5 mCi 210Po alpha source and a 100 mCi 90Sr beta source. Device performance is measured with increasing particle fluences. Previously reported results showed epitaxially grown InP solar cells to generate 76.5% of the beginning-of-life (BOL) maximum power under AM0 at a 1 MeV beta fluence of 6*1015 e/cm 2[1]. In this study, a degradation to 71.1% unirradiated maximum power was seen at a 1MeV beta fluence of 3.19*1015 e/cm2. This demonstrates that ELO InP cells degrade comparably to bulk InP cells under ionizing radiation. An InGaAs cell was measured under 5.4 MeV alpha radiation and had a 50% BOL performance point at 4.7*109 5.4MeV alpha/cm2. The 50% BOL performance point for an InP cell in the same conditions was 1.9*1010 alpha/cm 2, showing similar degradation at 4x the alpha fluence.
机译:在这项工作中,针对空间应用,特别是对热效应和电离辐射效应的耐受性,研究了新颖的III-V光伏(PV)材料和器件结构。首先关注的是GaP太阳能电池的高温性能,以及通过掺入InGaP / GaP量子阱结构来提高性能。对GaP太阳能电池的温度相关性能进行了建模,并将其与GaAs的建模温度相关性进行了比较。温度模型显示,GaP电池的归一化效率温度系数应为-1.31 * 10 -3°C-1,而标准GaAs电池应具有-2.23 * 10 -3°C-1的归一化温度系数,代表效率的温度稳定性提高了42%。 GaP和GaAs太阳能电池均使用金属有机气相外延生长,并制成太阳能电池器件。在太阳能电池上进行了各种光学和电学表征。最后,在模拟亚1 AU太阳轨道中看到的温度和光密度的环境中测量了GaP太阳能电池的性能,并模拟了接近太阳时对太阳能电池的影响。对GaP太阳能电池测得的正归一化温度系数为2.78 * 10 -3°C-1,表明性能随温度升高而提高。此外,比较具有和不具有量子阱的GaP太阳能电池的结果,不具有MQW的器件的集成短路电流密度为1.85 mA / cm2,而包含量子阱的器件的短路电流密度为2.07 mA / cm 2或与没有量子阱的器件相比,短路电流增加了12.4%,这表明量子阱可以有效地用于增加GaP太阳能电池中的电流产生。;本论文的第二个重点是外延剥离的电离辐射耐受性off(ELO)InP和InGaAs(晶格匹配InP),目的是评估高辐射地球轨道上的设备寿命。在暴露于5 mCi 210Poα源和100 mCi 90Srβ源之前,太阳能电池的特征在于光谱响应性以及照明和暗电流-电压(I-V)测量。器件性能是通过增加粒子注量来衡量的。先前报道的结果显示,在AM0下,外延生长的InP太阳能电池在1 MeVβ积分通量为6 * 1015 e / cm 2的情况下,可产生76.5%的寿命开始(BOL)最大功率[1]。在这项研究中,在3.19 * 1015 e / cm2的1MeVβ能量密度下,未辐照的最大功率下降到71.1%。这表明在电离辐射下,ELO InP细胞可与体InP细胞相比降解。在5.4 MeVα辐射下测量了一个InGaAs电池,其BOL性能点为50%,为4.7 * 109 5.4MeVα/ cm2。在相同条件下,InP电池的50%BOL性能点为1.9 * 1010 alpha / cm 2,在4倍的alpha通量下显示出类似的降解。

著录项

  • 作者

    Bittner, Zachary S.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Alternative Energy.;Physics Quantum.;Engineering Electronics and Electrical.;Engineering Aerospace.
  • 学位 M.S.
  • 年度 2012
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号