首页> 外文学位 >Evolvability and rate of evolution in evolutionary computation .
【24h】

Evolvability and rate of evolution in evolutionary computation .

机译:进化计算中的可进化性和演化速率。

获取原文
获取原文并翻译 | 示例

摘要

Evolvability has emerged as a research topic in both natural and computational evolution. It is a notion put forward to investigate the fundamental mechanisms that enable a system to evolve. A number of hypotheses have been proposed in modern biological research based on the examination of various mechanisms in the biosphere for their contribution to evolvability. Therefore, it is intriguing to try to transfer new discoveries from Biology to and test them in Evolutionary Computation (EC) systems, so that computational models would be improved and a better understanding of general evolutional mechanisms is achieved.;Central to this thesis is our new definition of rate of evolution in EC. We transfer the method of measurement of the rate of genetic substitutions from molecular biology to EC. The implementation in a Genetic Programming (GP) system shows that such measurements can indeed be performed and reflect well how evolution proceeds. Below the level of fitness development it provides observables at the genetic level of a GP population during evolution. We apply this measurement method to investigate the effects of four major configuration parameters in EC, i.e., mutation rate, crossover rate, tournament selection size, and population size, and show that some insights can be gained into the effectiveness of these parameters with respect to evolution acceleration. Further, we observe that population size plays an important role in determining the rate of evolution. We formulate a new indicator based on this rate of evolution measurement to adjust population size dynamically during evolution. Such a strategy can stabilize the rate of genetic substitutions and effectively improve the performance of a GP system over fixed-size populations. This rate of evolution measure also provides an avenue to study evolvability, since it captures how the two sides of evolvability, i.e., variability and neutrality, interact and cooperate with each other during evolution. We show that evolvability can be better understood in the light of this interplay and how this can be used to generate adaptive phenotypic variation via harnessing random genetic variation. The rate of evolution measure and the adaptive population size scheme are further transferred to a Genetic Algorithm (GA) to solve a real world application problem - the wireless network planning problem. Computer simulation of such an application proves that the adaptive population size scheme is able to improve a GA's performance against conventional fixed population size algorithms.;Rate of evolution comes in different flavors in natural and computational evolution. Specifically, we distinguish the rate of fitness progression from that of genetic substitutions. The former is a common concept in EC since the ability to explicitly quantify the fitness of an evolutionary individual is one of the most important differences between computational systems and natural systems. Within the biological research community, the definition of rate of evolution varies, depending on the objects being examined such as gene sequences, proteins, tissues, etc. For instance, molecular biologists tend to use the rate of genetic substitutions to quantify how fast evolution proceeds at the genetic level. This concept of rate of evolution focuses on the evolutionary dynamics underlying fitness development, due to the inability to mathematically define fitness in a natural system. In EC, the rate of genetic substitutions suggests an unconventional and potentially powerful method to measure the rate of evolution by accessing lower levels of evolutionary dynamics.
机译:可演化性已经成为自然和计算进化中的研究主题。提出了研究使系统演进的基本机制的想法。在现代生物学研究中,基于对生物圈中各种机制对可进化性的贡献的研究,提出了许多假设。因此,尝试将新发现从生物学转移到进化计算(EC)系统中并对其进行测试是很有趣的,从而可以改进计算模型并更好地理解一般的进化机制。 EC发展速度的新定义。我们将测量遗传替代率的方法从分子生物学转移到EC。基因编程(GP)系统中的实现表明,此类测量确实可以执行,并很好地反映了进化的进行方式。在适应性发展水平以下,它在进化过程中提供了GP种群遗传水平的可观察性。我们采用这种测量方法来研究EC中四个主要配置参数的影响,即突变率,交叉率,比赛选择规模和人口规模,并表明可以从这些参数的有效性方面获得一些见解。进化加速。此外,我们观察到种群数量在确定进化速率中起着重要作用。我们基于此进化率测量公式制定了新指标,以在进化过程中动态调整种群规模。这种策略可以稳定遗传替代率,并有效提高GP系统在固定规模种群上的性能。这种进化速率度量还提供了研究可进化性的途径,因为它捕获了可进化性的两个方面,即变异性和中立性在进化过程中如何相互作用和相互配合。我们表明,鉴于这种相互作用,以及如何将其用于通过利用随机遗传变异来产生适应性表型变异,可以更好地理解其进化能力。进化率测度和自适应人口规模方案被进一步转移到遗传算法(GA)中,以解决现实世界中的应用问题-无线网络规划问题。这种应用程序的计算机仿真证明,自适应种群规模方案能够相对于常规固定种群规模算法提高遗传算法的性能。演化速率在自然演化和计算演化中具有不同的风格。具体来说,我们将适应度发展的速度与基因替代的速度区分开来。前者是EC中的一个常见概念,因为能够明确量化进化个体的适应能力是计算系统与自然系统之间最重要的区别之一。在生物研究界中,进化速率的定义因基因,序列,蛋白质,组织等被检查的对象而异。例如,分子生物学家倾向于使用遗传替代率来量化进化的速度。在基因水平上。由于无法在自然系统中数学定义适应度,因此进化速率的概念侧重于适应度发展背后的进化动力学。在欧共体中,遗传替代率提出了一种非常规且可能强大的方法,可通过获取较低水平的进化动力学来衡量进化速率。

著录项

  • 作者

    Hu, Ting.;

  • 作者单位

    Memorial University of Newfoundland (Canada).;

  • 授予单位 Memorial University of Newfoundland (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号