首页> 外文学位 >Hydrogen production from methane using oxygen-permeable ceramic membranes.
【24h】

Hydrogen production from methane using oxygen-permeable ceramic membranes.

机译:使用透氧陶瓷膜从甲烷制氢。

获取原文
获取原文并翻译 | 示例

摘要

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements.;In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio.;The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance.;During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of CO and CO2 showed a higher CO and CO2 adsorption (for temperatures ranging from room temperature to 600°C) on BSCF compared to the SFC membrane.;CO2 reforming reactions on BSCF and SFC dense membranes in a membrane reactor showed higher methane conversion and H2/CO ratio on BSCF than SFC in the presence of the Pt/CeZrO2 catalyst. This high conversion and H2/CO ratio could be ascribed to higher CO, CO2, and H2 adsorption on BSCF than SFC, resulting in higher steam and CO2 reforming on the BSCF.;The Pt-Ni/CeZrO2 catalyst exhibits promising performance for hydrogen production. Platinum enhances the reducibility of Ni/Al2O 3 and Ni/CeZrO2 catalysts resulting in improved catalysts for H2 production at moderate temperatures. TPR and Raman studies show an alloy formation in the Pt-Ni/Al2O3 catalyst. Further work is required to study the interaction between Pt and Ni in the bimetallic Pt-Ni/CeZrO2 and Pt-Ni/Al2O3 catalysts.;Although the Pt-Ni/Al2O3 catalyst shows high methane conversion in the presence of the BSCF membrane at 800°C, the activity of this catalyst is low at 600°C. Pt-Ni/CeZrO2 bimetallic catalyst demonstrates superior performance compared to Pt-Ni/Al2O3 catalyst at 600°C. The thinner BSCF membrane (2.2 mm) demonstrates a higher methane conversion and H2:CO ratio than the thicker BSCF membrane (2.6 mm) because membrane oxygen flux is inversely proportional to thickness. Varying the pH of the precursor solution during membrane preparation has no significant effect on the oxygen flux or the reaction. The CH 4:CO2 feed ratio significantly affects the hydrogen production over the BSCF membrane. Altering the CH4:CO2 ratio has a direct impact on the oxygen flux, which in turn can influence the reaction pathway. These studies suggest that the Pt-Ni/CeZrO2 catalyst might be suitable for low-temperature hydrocarbon conversion reactions over thin BSCF ceramic membranes. Most importantly, the BSCF membrane can reduce the apparent activation energy of the CO2 reforming reaction by changing the reaction pathway to include more steam reforming.
机译:具有混合的离子和电子传导性的无孔陶瓷膜在膜反应器系统中引起了人们的极大兴趣,该系统用于将甲烷和高级烃转化为高价值的产品(如氢气)。然而,这种方法制氢还没有商业化,存在膜稳定性差,膜通量低,制膜成本高和反应温度要求高的问题。膜(致密SFC和BSCF)已被研究。这项研究的重点是不同参数对提高膜反应器中氢气产量的影响。这些参数包括操作温度,催化剂类型,膜材料,膜厚度,膜制备pH和进料比。;已经研究了膜在甲烷转化中的作用以及与Pt / CeZrO2催化剂的相互作用。在粉碎的膜材料和催化剂的物理混合物上对反应物和产物进行脉冲研究已清楚地表明,在反应条件下,膜和催化剂之间存在协同作用。催化剂/膜相互作用的程度强烈影响甲烷的转化率和催化剂性能。;在热重分析中,观察到BSCF的氧气释放起始温度低于SFC的氧气释放起始温度,而氧气释放的数量明显更大。在800°C的破碎膜上脉冲注入CO2已显示,在BSCF膜上的CO2解离比在SFC膜上更多,从而导致在BSCF膜上形成更高的CO。与CO2脉冲相似,当在800°C下将CO注入样品时,BSCF上的CO2产生要高于SFC。已发现,BSCF颗粒的氢消耗量比SFC颗粒的氢消耗量高24倍。此外,与SFC膜相比,BSCF上的CO和CO2拉曼光谱和程序升温脱附研究表明BSCF上的CO和CO2吸附更高(对于从室温到600°C的温度); BSCF和SFC致密膜上的CO2重整反应在Pt / CeZrO2催化剂的存在下,膜反应器中的SCF在BSCF上的甲烷转化率和H2 / CO比在SFC中更高。如此高的转化率和H2 / CO比可归因于BSCF上的CO,CO2和H2吸附高于SFC,从而导致BSCF上更高的蒸汽和CO2重整。 。铂提高了Ni / Al2O 3和Ni / CeZrO2催化剂的还原性,从而改善了在中等温度下生产H2的催化剂。 TPR和拉曼研究表明,在Pt-Ni / Al2O3催化剂中形成了合金。需要进一步的工作来研究双金属Pt-Ni / CeZrO2和Pt-Ni / Al2O3催化剂中Pt和Ni之间的相互作用;尽管在800℃下存在BSCF膜的情况下Pt-Ni / Al2O3催化剂显示出很高的甲烷转化率℃,该催化剂的活性在600℃下较低。与Pt-Ni / Al2O3催化剂相比,Pt-Ni / CeZrO2双金属催化剂在600°C下表现出优异的性能。较薄的BSCF膜(2.2毫米)比较厚的BSCF膜(2.6毫米)显示出更高的甲烷转化率和H2:CO比,因为膜的氧通量与厚度成反比。在膜制备过程中改变前体溶液的pH值对氧通量或反应没有明显影响。 CH 4:CO 2进料比显着影响BSCF膜上的氢气产生。改变CH4:CO2的比例会直接影响氧气通量,进而影响反应路径。这些研究表明,Pt-Ni / CeZrO2催化剂可能适用于薄BSCF陶瓷膜上的低温烃转化反应。最重要的是,BSCF膜可通过改变反应途径以包含更多的蒸汽重整来降低CO2重整反应的表观活化能。

著录项

  • 作者

    Faraji, Sedigheh.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Alternative Energy.;Engineering Chemical.;Energy.
  • 学位 D.Eng.
  • 年度 2010
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号