首页> 外文学位 >Polyamine-based polymer electrolyte modification and performance.
【24h】

Polyamine-based polymer electrolyte modification and performance.

机译:聚胺基聚合物电解质的改性和性能。

获取原文
获取原文并翻译 | 示例

摘要

Relatively unexplored polyamine-based polymer electrolytes are being studied as key components in next generation power sources: high energy density and light weight solid state polymer batteries. Understanding the relationship between backbone modification and the resulting property changes of the polyamine-based polymer electrolytes is the focus of the first part of this dissertation. Linear poly(propyleneimine) (LPPI) was synthesized. LPPI were spectroscopically compared with linear poly(ethyleneimine) (LPEI) as a polymer electrolyte host for lithium trifluoromethanesulfonate (LiTf). Infrared spectroscopy (IR) reveals that the ionic association state of LPPI/LiTf is independent of salt concentration, while that of LPEI/LiTf shifts with salt concentration. Differential Scanning Calorimetry (DSC) shows a decrease of crystalline melting endotherms with increasing LiTf concentration in both systems. However, LPPI/LiTf has a relatively constant Tg with changing LiTf concentration, while that of LPEI/LiTf is LiTf concentration dependent. These observations show that both LPPI and LPEI are disrupted into crystalline and amorphous phases upon the addition of salt. However, the amorphous phase of LPPI/LiTf has a relatively constant composition while that of LPEI/LiTf is constantly changing. Consistent with these observations, LPPI/LiTf and LPEI/LiTf have different temperature-dependent ionic conductivity behaviors although they are of similar magnitude, up to 10-7 S/cm at room temperature and 10-3.5 S/cm at 70 °C. Linear poly(N-methylpropylenimine) (LPMPI) was synthesized from LPPI and was compared to linear poly(N-methylethylenimine) (LPMEI). Research on LPMPI polymer electrolytes is ongoing.; A viable method for forming neutrally cross-linked solid polymer electrolytes (SPE) by synthetically combining both conductivity enhancing functionality and crosslink-enabling functionality on a polyamine backbone was established. In order to find an appropriate crosslinking functionality, inexpensive branched poly(N-allylethylenimine) (BPAEI) was synthesized from commercially available branched PEI. BPAEI was cross-linked using 2,2-azobis(2-amidinopropane) dihydrochloride (V-50) as radical initiator in the presence of LiTf to form a rubber-like SPE. Although IR shows most Tf ions stay as 'free' ions, the overall conductivity is poor due to a loss of polymer flexibility upon crosslinking as indicated by DSC. The highest conductivity achieved in this system is about 10 -5 S/cm at 80 °C. The optimum conditions (20:1 N:Li+ ratio, 60:1 N:initiator) for best conductivity were determined.; Linear poly(N-allylethylenimine-co-N-(2-(2-methoxyethoxy)ethylenimine) (LPAG2EI), in which the ratio between the allylic side-chain and G2 side-chain is roughly 1:1, was synthesized. Neutral SPEs with various amounts of LiTf were prepared using the optimum V-50 composition. IR indicates that Tf appears to exist mainly as 'free' ion while DSC shows a relatively low Tg (-15 °C) and no crystalline phase even at a high salt composition (5:1, N:Li +). Cross-linked LPAG2EI/LiTf SPEs have good physical properties and outstanding ionic conductivity, above 10-5 S/cm at 35 °C.; Finally, lithium secondary batteries that function at room temperature were built using LPAG2EI based SPE and recycled at different temperatures and drain rates for preliminary evaluation. Although the recycling results were not consistently reproducible, we were able to obtain specific capacities about 90 mAh/g at 100 °C with the charge/discharge current densities at 10/20 muA/cm2. With the increase of cycle number, the recycling efficiency gradually approached 100%.
机译:相对未开发的基于多胺的聚合物电解质正在研究中,作为下一代电源中的关键组件:高能量密度和轻质固态聚合物电池。理解骨架改性与多胺基聚合物电解质的性能变化之间的关系是本论文的第一部分。合成线性聚(丙烯亚胺)(LPPI)。光谱法将LPPI与线性聚(乙烯亚胺)(LPEI)作为三氟甲烷磺酸锂(LiTf)的聚合物电解质主体进行了比较。红外光谱(IR)显示LPPI / LiTf的离子缔合状态与盐浓度无关,而LPEI / LiTf的离子缔合状态随盐浓度而变化。差示扫描量热法(DSC)显示,在两个系统中,随着LiTf浓度的增加,晶体熔融吸热值降低。但是,随着LiTf浓度的变化,LPPI / LiTf的Tg相对恒定,而LPEI / LiTf的Tg则取决于LiTf的浓度。这些观察结果表明,加入盐后,LPPI和LPEI均被破坏为结晶相和非晶相。然而,LPPI / LiTf的非晶相具有相对恒定的组成,而LPEI / LiTf的非晶相却不断变化。与这些观察结果一致,LPPI / LiTf和LPEI / LiTf具有不同的温度依赖性离子电导行为,尽管它们的大小相似,在室温下高达10-7 S / cm,在70°C时高达10-3.5 S / cm。由LPPI合成线性聚(N-甲基丙基亚胺)(LPMPI),并将其与线性聚(N-甲基乙基亚胺)(LPMEI)进行比较。 LPMPI聚合物电解质的研究正在进行中。建立了一种通过在聚胺主链上合成导电性增强功能和启用交联功能的方法来形成中性交联固体聚合物电解质(SPE)的可行方法。为了找到合适的交联官能度,从市售的支链PEI合成廉价的支链聚(N-烯丙基亚乙基亚胺)(BPAEI)。在LiTf存在下,使用2,2-偶氮双(2-ami基丙烷)二盐酸盐(V-50)作为自由基引发剂使BPAEI交联,形成橡胶状SPE。尽管IR显示大多数Tf离子保留为“游离”离子,但总电导率很差,这是由于DSC指示的交联时聚合物柔韧性的损失。在80°C下,该系统获得的最高电导率约为10 -5 S / cm。确定了最佳电导率的最佳条件(20:1 N:Li +比,60:1 N:引发剂)。合成了线性聚(N-烯丙基亚乙基亚胺-co-N-(2-(2-甲氧基乙氧基)亚乙基亚胺)(LPAG2EI),其中烯丙基侧链与G2侧链的比例约为1:1。使用最佳的V-50组成制备了各种LiTf的SPE,IR表明Tf主要以“游离”离子形式存在,而DSC显示相对较低的Tg(-15°C),即使在较高的温度下也没有结晶相。盐组成(5:1,N:Li +)。交联的LPAG2EI / LiTf SPE具有良好的物理性能和出色的离子电导率,在35°C时高于10-5 S / cm。室温是使用基于LPAG2EI的SPE构建的,并在不同的温度和耗水率下进行回收以进行初步评估,尽管回收结果并不能始终如一地再现,但通过充放电,我们能够在100°C下获得约90 mAh / g的比容量电流密度为10/20μA/ cm2。随着循环次数的增加,回收效率逐渐接近100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号