首页> 外文学位 >Pattern formation in actin gels: A study in the mechanics of gels formed by the important cytoskeletal protein actin, especially as applied to cellular motility.
【24h】

Pattern formation in actin gels: A study in the mechanics of gels formed by the important cytoskeletal protein actin, especially as applied to cellular motility.

机译:肌动蛋白凝胶中的模式形成:由重要的细胞骨架蛋白肌动蛋白形成的凝胶的力学研究,特别是应用于细胞运动的凝胶。

获取原文
获取原文并翻译 | 示例

摘要

We have studied pattern formation in actin gels to better understand how they function in biological systems, especially in the motility mechanism used by some pathogenic bacteria such as Listeria. By coating themselves with certain enzymes, these bacteria appropriate actin (a protein) from the surrounding host cell's cytoplasm and cause a network or "gel" of actin filaments to grow on their outer surface. As the resulting "comet tail" shaped protrusion grows, it pushes the bacterium away.; In experiments, polystyrene beads coated with the same enzymes will also generate comet tails and swim in a very similar manner. However, these bead experiments have also generated anomalous results such as the formation of many comet tails. In some experiments, when two comet tails formed they systematically grew into regular, oppositely handed helices.; The formation of any comet tails on a bead poses a physical conundrum. The bacterial enzyme coating is asymmetrical so the comet tail forms in a particular place. But the beads are symmetrical, so comet tails formation constitutes symmetry breaking and spontaneous pattern formation.; We have modeled this process as a competition between elastic energy (which favors many tails) and chemical energy (which favors few tails). Our analytical model explains the factors that experimentally determine the number of tails, and numerical simulations confirm these predictions.; To understand the helical tails, we did extensive data analysis involving image processing, statistical analysis and mathematical modeling of images of the helical tails. We identified some important features of how the twin tails form. For instance, the tail growth rate is independent of drag force, and bead rotation must accompany helical tail formation. We also created a physical model for helical growth. Numerical simulations of our model show that at very low Reynolds number, a cylindrical object growing under the conditions of an actin comet tail can spontaneously grow into a helical shape.
机译:我们研究了肌动蛋白凝胶中的模式形成,以更好地了解它们在生物系统中的功能,特别是在某些病原细菌(如李斯特菌)所使用的运动机制中。通过用某些酶包被自身,这些细菌从周围宿主细胞的细胞质中吸收了肌动蛋白(一种蛋白质),并导致肌动蛋白丝的网络或“凝胶”在其外表面生长。随着形成的“彗尾”形突起的生长,它将细菌推开。在实验中,涂有相同酶的聚苯乙烯珠也将产生彗尾并以非常相似的方式游动。但是,这些珠子实验也产生了异常结果,例如形成许多彗尾。在一些实验中,当两条彗尾形成时,它们系统地长成规则的,相反的螺旋。珠子上任何彗星尾巴的形成都会带来物理难题。细菌酶涂层是不对称的,因此彗星尾巴会在特定位置形成。但是珠子是对称的,所以彗星尾巴的形成构成对称的断裂和自发的图案形成。我们将此过程建模为弹性能(有利于尾巴)和化学能(有利于少尾巴)之间的竞争。我们的分析模型解释了实验确定尾巴数量的因素,数值模拟证实了这些预测。为了理解螺旋状尾巴,我们进行了广泛的数据分析,包括图像处理,统计分析和螺旋状尾巴图像的数学建模。我们确定了双尾巴如何形成的一些重要特征。例如,尾部的生长速度与阻力无关,并且珠子的旋转必须伴随着螺旋状尾部的形成。我们还创建了一个螺旋增长的物理模型。我们模型的数值模拟表明,在非常低的雷诺数下,在肌动蛋白彗星尾巴条件下生长的圆柱形物体可以自发地生长为螺旋形。

著录项

  • 作者

    Balter, Ariel.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Physics General.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号